精英家教网 > 高中数学 > 题目详情
2.若函数f(x)同时满足:①对于定义域上的任意x,恒有f(x)+f(-x)=0;②对于定义域上的任意x1,x2,当x1≠x2时,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则称函数f(x)为“理想函数“.下列四个函数中:①f(x)=$\frac{1}{x}$;②f(x)=x2;③f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$;④f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,能称为“理想函数”的有③(写出所有满足要求的函数的序号).

分析 先理解已知两条性质反映的函数性质,①f(x)为奇函数,②f(x)为定义域上的单调减函数,由此意义判断题干所给四个函数是否同时具备两个性质即可

解答 解:依题意,性质①反映函数f(x)为定义域上的奇函数,性质②反映函数f(x)为定义域上的单调减函数,
①f(x)=$\frac{1}{x}$为定义域上的奇函数,但不是定义域上的单调减函数,其单调区间为(-∞,0),(0,+∞),故排除①;
②f(x)=x2 为定义域上的偶函数,排除②;
③f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$的图象如图:显然此函数为奇函数,且在定义域上为减函数,故③为理想函数;
④f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$=1-$\frac{2}{{2}^{x}+1}$,定义域为R,由于y=2x+1在R上为增函数,故函数f(x)为R上的增函数,排除④;
故答案为 ③.

点评 本题主要考查了抽象表达式反映的函数性质,对新定义函数的理解能力,奇函数的定义,函数单调性的定义,基本初等函数的单调性和奇偶性及其判断方法,复合函数及分段函数的单调性和奇偶性的判断方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.方程x2+y2cosα=1(α∈R)不能表示的曲线为(  )
A.椭圆B.双曲线C.抛物线D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\sqrt{3}$cos2x-2sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在锐角△ABC中,角A、B、C的对边分别是a、b、c,f(A)=-$\sqrt{3}$,a=$\sqrt{3}$,b=$\sqrt{2}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知P是边长为4的正△ABC的边BC上的动点,则$\overrightarrow{AP}•(\overrightarrow{AB}+\overrightarrow{AC})$(  )
A.最大值为16B.是定值24C.最小值为4D.是定值4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若a∈R,b∈R,且a>0,b>0,2c>a+b.
(1)综合法证明:c2>ab;
(2)分析法证明:c-$\sqrt{{c}^{2}-ab}$<a<c+$\sqrt{{c}^{2}-ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果圆柱的轴截面的周长l为定值,则圆柱体积的最大值为(  )
A.($\frac{l}{6}$)3πB.($\frac{l}{3}$)3πC.($\frac{l}{4}$)3πD.$\frac{1}{4}$($\frac{l}{4}$)3π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a∈R,求关于x的不等式ax2-3x-1≥0(x<0)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$m(x-1)2-2x+3+lnx(m≥1).
(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];
(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,正方形ABCD中,AC与BD交于O,$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BD}$,$\overrightarrow{CF}$=$\frac{1}{4}$$\overrightarrow{CB}$,若$\overrightarrow{BD}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{OF}$,则λ+μ的值为(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

同步练习册答案