精英家教网 > 高中数学 > 题目详情
已知锐角A,B满足2tanA=tan(A+B),则tanB的最大值为(  )
A、2
2
B、
2
C、
2
2
D、
2
4
考点:两角和与差的正切函数
专题:三角函数的求值
分析:令tanA=x,tanB=y(x、y>0).则有
x+y
1-xy
=2x,故有 y=
x
1+2x2
=
1
1
x
+2x
,再利用基本不等式求得y的最大值.
解答: 解:已知锐角A,B满足2tanA=tan(A+B),为简单起见,
令tanA=x,tanB=y(x、y>0).
则有
x+y
1-xy
=2x,即 y=
x
1+2x2
=
1
1
x
+2x
1
2
2
=
2
4

当且仅当2x=
1
x
 时,取等号,故y=tanB的最大值为
2
4

故选:D.
点评:本题主要考查两角和的正切公式,基本不等式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x2+ax+2b在区间(0,1),(1,2)内各有一个零点,则z=
2a+b-4
a
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果直线l⊥平面α,①若直线m⊥l,则m∥α;②若m⊥α,则m∥l;③若m∥α,则m⊥l;④若m∥l,则m⊥α,上述判断正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+kx+4
x
(1≤x≤3),若对定义域内的任意实数x1、x2、x3不等式f(x1)+f(x2)>f(x3)恒成立,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,-2)
b
=(x,4)
,且
a
b
,则|
a
-
b
|=(  )
A、5
3
B、3
5
C、2
5
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个三棱锥的三视图如图,其中俯视图是斜边长为2的等腰直角三角形,该三棱锥的外接球的半径为
2
,则该三棱锥的体积为(  )
A、
2
3
B、
4
3
C、
2
3
D、
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①若A、B、C、D是空间任意四点,则有
AB
+
BC
+
CD
+
DA
=0;
②|
a
|-|
b
|=|
a
+
b
|是
a
b
共线的充要条件;
③若
a
b
共线,则
a
b
所在直线平行;
④对空间任意一点P与不共线的三点A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),则P、A、B、C四点共面.其中不正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为(  )
A、
3
B、π
C、
3
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M到点F(0,1)的距离等于点M到直线y=-1的距离,点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设P为直线l:x-y-2=0上的点,过点P做曲线C的两条切线PA,PB,当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(Ⅲ)当点P在直线l上移动时,求|AF|•|BF|的最小值.

查看答案和解析>>

同步练习册答案