·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¼´µÃ½áÂÛ£»
£¨2£©¸ù¾ÝÌâÒâ·Öa1=0£¬a1¡Ý2£¬a1=1ÌÖÂÛ¼´¿É£»
£¨3£©Èôan=2n £¨n=1£¬2£¬3£©£¬ÔòbmΪ²»³¬¹ý$\frac{1}{2}{m}^{2}$µÄ×î´óÕûÊý£¬¶Ôm·ÖÆæÅ¼ÌÖÂÛµÃbm=$\left\{\begin{array}{l}{2{k}^{2}-2k£¬}&{m=2k-1£¨k¡Ê{N}^{*}£©}\\{2{k}^{2}£¬}&{{m=2k£¨k¡ÊN}^{*}£©}\end{array}\right.$£¬¼ÙÉè´æÔÚ¿ØÖƺ¯Êýg£¨n£©£¬µÃp=2£¬ÇÒ0¡Üq¡Ü2£¬q¡ÊZ£¬·Öq=0£¬1£¬2ÈýÖÖÇé¿öÌÖÂÛ¼´¿É£®
½â´ð ½â£º£¨1£©Èôb1=1£¬ÒòΪÊýÁÐ{an}µ¥µ÷µÝÔö£¬
ËùÒÔa1¡Ü12£¬ÓÖËùÓÐÏî¶¼ÊÇ×ÔÈ»Êý£¬ËùÒÔa1=0»ò1£»
£¨2£©ÒòΪÊýÁÐ{an}µÄÿÏî¶¼ÊÇ×ÔÈ»Êý£¬
Èôa1=0¡Ü12£¬Ôòb1¡Ý1£¬Óëa1=b1ì¶Ü£»
Èôa1¡Ý2£¬ÔòÒòÊýÁÐ{an}µ¥µ÷µÝÔö£¬¹Ê²»´æÔÚan¡Ü12£¬¼´b1=0£¬Ò²Óëa1=b1ì¶Ü£»
µ±a1=1ʱ£¬ÒòÊýÁÐ{an}µ¥µ÷µÝÔö£¬¹Ên¡Ý2ʱ£¬an£¾1£¬ËùÒÔb1=1£¬·ûºÏÌõ¼þ£»
×ÛÉÏ£¬a1=1£®
£¨3£©Èôan=2n £¨n=1£¬2£¬3£©£¬ÔòÊýÁÐ{an}µ¥µ÷µÝÔö£¬ÏÔÈ»ÊýÁÐ{bn}Ò²µ¥µ÷µÝÔö£¬
ÓÉ${a}_{n}¡Ü{m}^{2}$£¬¼´2n¡Üm2£¬µÃ$n¡Ü\frac{1}{2}{m}^{2}$£¬ËùÒÔbmΪ²»³¬¹ý$\frac{1}{2}{m}^{2}$µÄ×î´óÕûÊý£¬
µ±m=2k-1£¨k¡ÊN*£©Ê±£¬
ÒòΪ$2{k}^{2}-2k£¼\frac{1}{2}{m}^{2}=2{k}^{2}-2k+\frac{1}{2}$£¼2k2-2k+1£¬ËùÒÔ${b}_{m}=2{k}^{2}-2k$£»
µ±m=2k£¨k¡ÊN*£©Ê±£¬$\frac{1}{2}{m}^{2}=2{k}^{2}$£¬ËùÒÔ${b}_{m}=2{k}^{2}$£¬
×ÛÉÏ£¬bm=$\left\{\begin{array}{l}{2{k}^{2}-2k£¬}&{m=2k-1£¨k¡Ê{N}^{*}£©}\\{2{k}^{2}£¬}&{{m=2k£¨k¡ÊN}^{*}£©}\end{array}\right.$£¬
¼´µ±m£¾0ÇÒmÎªÆæÊýʱ£¬${b}_{m}=\frac{{m}^{2}-1}{2}$£»µ±m£¾0ÇÒmΪżÊýʱ£¬${b}_{m}=\frac{{m}^{2}}{2}$£®
ÈôÊýÁÐ{an}ÊÇÊýÁÐ{bm}µÄÉú³ÉÊýÁУ¬ÇÒ{bm}Éú³É{an}µÄ¿ØÖƺ¯Êýg£¨n£©£¬
ÔòbmÖв»³¬¹ý g£¨n£©µÄÏîÊýǡΪan£¬¼´bmÖв»³¬¹ýg£¨n£©µÄÏîÊýǡΪ2n£¬
ËùÒÔb2n¡Üg£¨n£©£¼b2n+1£¬¼´2n2¡Üpn2+qn+r£¼2n2+2n¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬
¼´$\left\{\begin{array}{l}{£¨p-2£©{n}^{2}+qn+r¡Ý0}\\{£¨2-p£©{n}^{2}+£¨2-q£©n-r£¾0}\end{array}\right.$¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬
¹ÊµÃp=2£¬ÇÒ$\left\{\begin{array}{l}{qn+r¡Ý0}\\{£¨2-q£©n-r£¾0}\end{array}\right.$¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬¹Ê0¡Üq¡Ü2£¬q¡ÊZ£¬
ÓÖ³£Êýr¡ÊZ£¬
µ±q=0ʱ£¬0¡Ür£¼2n£¨n¡Ý1£©£¬ËùÒÔr=0£¬»òr=1£»
µ±q=1ʱ£¬-n¡Ür£¼n£¨n¡Ý1£©£¬ËùÒÔr=0£¬»òr=-1£»
µ±q=2ʱ£¬-2n¡Ür£¼0£¨n¡Ý1£©£¬ËùÒÔr=-2£¬»òr=-1£»
ËùÒÔg£¨n£©=2n2£¬»ò2n2+1£¬»ò2n2+n-1£¬»ò2n2+n£¬»ò2n2+2n-2£¬»ò2n2+2n-1£¨n¡ÊN*£©£®
µãÆÀ ±¾ÌâÊÇÒ»µÀ¿¼²éж¨ÒåÌ⣬ÐèҪŪÇåиÅÄîµÄ±¾ÖÊ£¬¿¼²é·ÖÎöÄÜÁ¦¡¢¼ÆËãÄÜÁ¦ºÍ·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{3\sqrt{10}}{10}$ | B£® | -$\frac{\sqrt{10}}{10}$ | C£® | $\frac{\sqrt{10}}{10}$ | D£® | $\frac{3\sqrt{10}}{10}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com