精英家教网 > 高中数学 > 题目详情
17.已知抛物线C:y2=4x的焦点为F,过点M(-1,0)且斜率为k的直线l与抛物线C相交于不同的两点A、B,设直线FA,FB的斜率分别为k1,k2,且(k1-1)(k2-1)<0.
(1)求k的取值范围;
(2)设点A关于x轴的对称点为N,求△MNB面积的取值范围.

分析 (1)设过点M(-1,0)的直线L:x=my-1,代入抛物线方程整理得y2-4my+4=0,利用直线FA,FB的斜率分别为k1,k2,且(k1-1)(k2-1)<0,求出m的范围,即可求k的取值范围;
(2)设点A关于x轴的对称点为N,证明点F在直线BD上,即可求△MNB面积的取值范围.

解答 解:(1)抛物线C:y2=4x①的焦点为F(1,0),
设过点M(-1,0)的直线L:x=my-1,
代入①,整理得y2-4my+4=0,
设L与C 的交点A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=4,△=16m2-16>0,
∴|m|>1
∵直线FA,FB的斜率分别为k1,k2,且(k1-1)(k2-1)<0,
∴($\frac{{y}_{1}}{{x}_{1}-1}$-1)($\frac{{y}_{2}}{{x}_{2}-1}$-1)<0,
∴(1-m)2y1y2+2(1-m)(y1+y2)+4<0,
∴4(1-m)2+8m(1-m)+4<0,
∴m<-$\sqrt{2}$或m>$\sqrt{2}$,
∴-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$且k≠0;
(2)点A关于x轴的对称点N为(x1,-y1).设D(x2,y2),
BD的斜率k1=$\frac{{y}_{1}+{y}_{2}}{{x}_{2}-{x}_{1}}$=$\frac{4}{{y}_{2}-{y}_{1}}$,
BF的斜率k2=$\frac{{y}_{2}}{{x}_{2}-1}$.
要使点F在直线BD上,需k1=k2
需4(x2-1)=y2(y2-y1),
需4x2=y22
上式成立,∴k1=k2
∴点F在直线BD上.
∴△MNB面积S=$\frac{1}{2}×2×$|y2+y1|=|4m|>4$\sqrt{2}$.

点评 本题考查直线与抛物线的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设函数y=f(x)的定义域为D,若对于任意x1、x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx-3的某一个对称中心,并利用对称中心的上述定义,可得到$f({\frac{1}{2016}})+f({\frac{2}{2016}})+f({\frac{3}{2016}})+…+f({\frac{4030}{2016}})+f({\frac{4031}{2016}})$的值为(  )
A.-4031B.4031C.-8062D.8062

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=asinx+bcosx,其中a∈R,b∈R,如果对任意x∈R,都有f(x)≠2,那么在不等式①-4<a+b<4;②-4<a-b<4;③a2+b2<2;④a2+b2<4中,一定成立的不等式的序号是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合M={x|x2≤2x},N={y|y=1-x,x∈M},则M∩N等于(  )
A.{x|-1≤x≤0}B.{x|1≤x≤2}C.{x|-1≤x≤1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设全集U=R,集合A={x|-2<x<2},B={x|x≥1},求A∪B,∁u(A∪B),(∁uA)∩(∁uB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|ax-1|-2a(a>0,且a≠1)有两个互不相同的零点,则实数a的取值范围为(  )
A.a>1B.0<a<1C.0<a<$\frac{1}{2}$D.$\frac{1}{2}$<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,满足an=$\frac{{S}_{n}}{n}$+2n-2,n∈N*,且S2=6.
(1)求数列{an}的通项公式;
(2)证明:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a1,a2,…an,…为一实数数列,且对所有的正整数n满足an+1=$\frac{n(n+1)}{2}$-an
请问下列哪些选项是正确的?
(1)如果a1=1,则a2=1
(2)如果a1是正整数,则此数列的每一项都是整数
(3)如果a1是无理数,则此数列的每一项都是无理数
(4)a2≤a4≤…≤a2n≤…(n为正整数)
(5)如果ak是奇数,则ak+2,ak+4,…,ak+2n,…都是奇数(n为正整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:
未发病发病合计
未注射疫苗20xA
注射疫苗30yB
合计5050100
现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为$\frac{2}{5}$.
(Ⅰ)求2×2列联表中的数据的值;
(Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效?
(Ⅲ)能够有多大把握认为疫苗有效?
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(a+c)(c+d)(b+d)}$
P(X2≤K00.050.010.0050.001
K03.8416.6357.87910.828

查看答案和解析>>

同步练习册答案