精英家教网 > 高中数学 > 题目详情
1.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn=an•($\sqrt{3}$)${\;}^{{a}_{n}}$,求数列{bn}的前n项和Sn

分析 (1)设数列{an}的公差为d,利用a1+a2+a3=12可得d=2,进而可得结论;
(2)通过(1)知:bn=2n•3n,求出Sn、3Sn的表达式,利用错位相减法计算即得结论.

解答 解:(1)设数列{an}的公差为d,
由a1=2,可知:a2=2+d,a3=2+2d,
∵a1+a2+a3=12,∴6+3d=12,即d=2,
∴数列{an}的通项an=2+2(n-1)=2n;
(2)由(1)知:bn=an•($\sqrt{3}$)${\;}^{{a}_{n}}$=2n•${\sqrt{3}}^{2n}$=2n•3n
∴Sn=2[1•3+2•32+3•33+…+(n-1)•3n-1+n•3n],
3Sn=2[1•32+2•33+…+(n-2)•3n-1+(n-1)•3n+n•3n+1],
两式相减,得:-2Sn=2[3+32+33+…+3n-1+3n-n•3n+1]
=2•[$\frac{3(1-{3}^{n})}{1-3}$-n•3n+1]
=2($\frac{1-2n}{2}$•3n+1-$\frac{3}{2}$),
∴Sn=$\frac{2n-1}{2}$•3n+1+$\frac{3}{2}$.

点评 本题考查求数列的通项和前n项和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.把函数f(x)=sinx(x∈[0,2π])的图象向右平移$\frac{π}{3}$个单位后得到函数g(x)的图象,则f(x)与g(x)的图象所围成的面积为(  )
A.1B.$\sqrt{3}$C.$2\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.边长分别为a、b的矩形,按图中所示虚线剪裁后,可将两个小矩形拼接成一个正四棱锥的底面,其余恰好拼接成该正四棱锥的4个侧面,则$\frac{b}{a}$的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设等差数列{an}的前n项和为Sn,若S3=6,S4=12,则S7=42.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了保护环境,某化工厂政府部门的支持下,进行技术改进:每天把工业废气转化为某种化工产品和符合排放要求的气体.该工厂日处理废气的能力不低于40吨但不超过70吨.经测算,该工厂处理废气的成本y(元)与处理废气量x(吨)之间的函数关系可近似地表示为:y=2x2-120x+5000,且每处理1吨工业废气可得价值为60元的某种化工产品.
(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,为了保证工厂在每天生产中都不出现亏损现象,国家财政部门补贴至少每天多少元?
(2)若国家给予企业处理废气每吨70元财政补贴,当工厂处理量为多少吨时,工厂处理每吨废气平均收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)满足条件:?x∈R,f(x)+f(-x)=0且f(x+t)-f(x)<0(其中t为正数),则函数f(x)的解析式可以是(  )
A.y=$\frac{1}{x}$B.y=x3C.y=sinxD.y=-3x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若$\overrightarrow{OE}=\frac{1}{2}(\overrightarrow{OF}+\overrightarrow{OP})$,则双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为2$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知菱形EFGH的顶点E、G在椭圆C1上,顶点F、H在直线7x-7y+1=0上,求直线EG的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在△ABC中,B(-1,0),C(1,0),CD、BE分别是△ABC的两条中线且相交于点G,且|CD|+|BE|=6.
(Ⅰ)求点G的轨迹Γ的方程;
(Ⅱ)直线l:y=x-1与轨迹Γ相交于M、N两点,P为轨迹Γ的动点,求△PMN面积的最大值.

查看答案和解析>>

同步练习册答案