精英家教网 > 高中数学 > 题目详情
3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距是2,离心率是$\frac{1}{2}$.
(1)求椭圆的方程;
(2)若直线l:y=x+1与椭圆C相交于点P,Q,试求出线段PQ的中点M的坐标.

分析 (1)运用离心率公式和a,b,c的关系,解得a,b,进而得到椭圆的方程;
(2)将直线方程y=x+1代入椭圆方程3x2+4y2=12,运用韦达定理和中点坐标公式,即可得到所求M的坐标.

解答 解:(1)由题意可得2c=2,e=$\frac{c}{a}$=$\frac{1}{2}$,
可得c=1,a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
即有椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)将直线方程y=x+1代入椭圆方程3x2+4y2=12,
可得7x2+8x-8=0,
设P(x1,y1),Q(x2,y2),
则x1+x2=-$\frac{8}{7}$,
可得PQ的中点的横坐标为$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{4}{7}$,
即有纵坐标为1-$\frac{4}{7}$=$\frac{3}{7}$,
则线段PQ的中点M的坐标为(-$\frac{4}{7}$,$\frac{3}{7}$).

点评 本题考查椭圆的方程的求法,注意运用椭圆的离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知倾斜角为45°的直线l过抛物线y2=4x的焦点,且与抛物线交于A,B两点,则△OAB(其中O为坐标原点)的面积为(  )
A.2B.$2\sqrt{2}$C.$3\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为振兴苏区发展,赣州市2016年计划投入专项资金加强红色文化基础设施改造.据调查,改造后预计该市在一个月内(以30天记),红色文化旅游人数f(x)(万人)与日期x(日)的函数关系近似满足:$f(x)=3-\frac{1}{20}x$,人均消费g(x)(元)与日期x(日)的函数关系近似满足:g(x)=60-|x-20|.
(1)求该市旅游日收入p(x)(万元)与日期x(1≤x≤30,x∈N*)的函数关系式;
(2)当x取何值时,该市旅游日收入p(x)最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\frac{1}{ln(2x+1)}$的定义域是(  )
A.$(-\frac{1}{2},+∞)$B.$(-\frac{1}{2},0)∪(0,+∞)$C.$[-\frac{1}{2},+∞)$D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知在等比数列{an}中,前n项和${S_n}={2^n}+t$,则数列的通项公式an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P是椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1和双曲线x2-y2=2的一个交点,若F1、F2分别是椭圆的左、右焦点,则cos∠F1PF2=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线l1:ax+2y+6=0与直线l2:x+(a-1)y-1=0垂直,则实数a=(  )
A.$\frac{2}{3}$B.-1C.2D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直线l与椭圆交于与椭圆相交于A、B两点,点P(1,1)是线段AB的中点,则直线l的斜率为(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.抛物线y=$\frac{{x}^{2}}{4}$的焦点为F,点P在抛物线上,若|PF|=5,则点P到y轴的距离为(  )
A.6B.5$\sqrt{2}$C.5D.4

查看答案和解析>>

同步练习册答案