精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=x-$\frac{2}{x}$,x∈[-2,-1],则f(x)的最大值为1,最小值为-1.

分析 求导f′(x)=1+$\frac{2}{{x}^{2}}$>0,从而判断函数的单调性,从而求最值.

解答 解:∵f(x)=x-$\frac{2}{x}$,
∴f′(x)=1+$\frac{2}{{x}^{2}}$>0,
∴函数f(x)=x-$\frac{2}{x}$在[-2,-1]上是增函数,
∴fmin(x)=f(-2)=-2+1=-1,
fmax(x)=f(-1)=-1+2=1;
故答案为:1,-1.

点评 本题考查了导数的综合应用及函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.若关于x的方程x21nx=a1na-a1nx有三个实根.求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等差数列{an}中,已知公差d=1,且a1+a3+…+a97+a99=60,则a1+a2+…+a99+a100=170.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)和二次函数g(x),m为常数,m>0,对任意x∈R,f(x)≤f(m),且对任意x∈R,总有常数x0使得g(x)≥g(x0)=-2,如果f(m)=5,g(m)=25,f(x)+g(x)=x2+16x+13.
(1)求常数m的值;
(2)求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定义在(0,∞)上的函数f(x),对于任意的x,y∈(0,+∞).都有f(xy)=f(x)+f(y)成立,当x>1时,f(x)>0.
(1)计算f(1);
(2)判断函数f(x)在(0,∞)上的单调性;
(3)若f(2)=1,解不等式3-f(x+2)>f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列四个结论正确的有②④.
①接近于3的数可以构成集合;
②集合A={y|y=x2+1},集合B={x|y=x2+1},则A⊆B;
③已知集合M={(x,y)|x+y=3},N={(x,y)|x-y=5},那么集合M∩N={4,-1};
④y=$\frac{{x}^{3}+x}{{x}^{2}+1}$与y=x表示同一函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}前n项和为Sn,满足a1=1,Sn+1=2Sn+2n+1,n∈N+
(1)求a2的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.判断下列函数的奇偶性,若为奇(偶)函数给出证明:
(1)f(x)=$\frac{(x-1)\sqrt{1+x}}{1-x}$;
(2)f(x)=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$;
(3)f(x)=3|x|,x∈R;
(4)f(x)=$\frac{3x}{{x}^{2}-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆的方程为x2+y2-6y=0,求圆心的坐标和半径.

查看答案和解析>>

同步练习册答案