精英家教网 > 高中数学 > 题目详情
9.如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,E、F分别为PC、BD的中点,平面PAD⊥平面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD.
(Ⅰ)求证:平面PAB⊥平面PCD;
(Ⅱ)若AD=2,求三棱锥F-BEC的体积.

分析 (1)由面面垂直得出CD⊥平面PAD,故CD⊥PA,由PA=PD=$\frac{{\sqrt{2}}}{2}$AD可得PA⊥PD,从而PA⊥平面PCD,于是平面PAB⊥平面PCD;
(2)取AD中点M,连结PM,利用等腰直角三角形的性质得出P到底面的距离PM,则E到平面ABCD的距离为$\frac{1}{2}PM$,把△BCF当做棱锥的底面,代入棱锥的体积公式计算出体积.

解答 (I)证明:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD?平面ABCD,CD⊥AD,
∴CD⊥平面PAD,又∵PA?平面PAD,∴CD⊥PA,
∵$PA=PD=\frac{{\sqrt{2}}}{2}AD$,∴△PAD是等腰直角三角形
且$∠APD=\frac{π}{2}$,即PA⊥PD,
又∵CD?平面PCD,PD?平面PCD,CD∩PD=D,
∴PA⊥平面PCD,
又∵PA?平面PAB
∴平面PAB⊥平面PCD.
(II)解:取AD中点M,连结PM,则PM⊥平面ABCD,
∵AD=2,
∴PM=$\frac{1}{2}AD=1$,
∵E是PC的中点,∴E到平面ABCD的距离h=$\frac{1}{2}PM=\frac{1}{2}$.
∵S△BCF=$\frac{1}{4}{S}_{正方形ABCD}$=1.
∴VF-BEC=VE-BCF=$\frac{1}{3}{S}_{△BCF}•h$=$\frac{1}{3}×1×\frac{1}{2}$=$\frac{1}{6}$.

点评 本题考查了面面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知2a+b=2,求f(x)=4a+2b的最值,及此时a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,若a1+a9=4,则a5等于(  )
A.2B.4C.-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,已知角A,B,C所对的边是a,b,c,则下列说法正确的有②③(写出所有正确命题的编号).
①若a=2,b=2$\sqrt{3}$,A=30°,则B=60°
②若sinA>sinB,则a>b,反之也成立
③若c2sin2B+b2sin2C=2bccosBcosC,则△ABC一定是直角三角形
④若b2=ac且cos(A-C)=$\frac{3}{2}$-cosB,则B=$\frac{π}{3}$或B=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E为C1D1的中点.
(1)求证:DE⊥平面BEC;
(2)求三棱锥C-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了研究数学、物理学习成绩的关联性,某位老师从一次考试中随机抽取30名学生,将数学、物理成绩进行统计,所得数据如表,其中数学成绩在120分以上(含120分)为优秀,物理成绩在80分以上(含80分)为优秀.
编号数学成绩xi物理成绩yi编号数学成绩xi物理成绩yi编号数学成绩xi物理成绩yi
11088211124802112264
21127612136862213682
31307813127832311484
4132911480732412180
5108681513881258852
61408816141912614283
71439217109852712569
8997218100802813590
9106841992732911282
101207720132823012892
(1)根据表格完成下面2×2的列联表:
数学成绩不优秀数学成绩优秀合计
物理成绩不优秀
物理成绩优秀
合计
(2)若这一次考试物理成绩y关于数学成绩x的回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,
由图中数据计算成$\overline{x}$=120,$\overline{y}$=80,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=2736,$\sum_{i=1}^{n}$(xi-$\overline{x}$)2=8480,若y关于x的回归方程,据此估计,数学成绩每提高10分,物理成绩约提高多少分?(精确到0.1).
附1:独立性检验:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.150.100.0500.010
k2.0722.7063.8416.635
附2:若(x1,y1),(x2,y2),…(xn,yn)为样本点,$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$为回归直线,
则$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,
AD=4,∠PAD=60°.
(1)若M为PA的中点,求证:DM∥平面PBC;
(2)求三棱锥D-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线m,n和平面α,m?α,n∥m,那么“n?α”是“m∥α”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有公共焦点,且过点(3$\sqrt{2}$,2)的双曲线的标准方程.

查看答案和解析>>

同步练习册答案