精英家教网 > 高中数学 > 题目详情

【题目】在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上贏得一片赞誉.我国某口罩生产厂商在加大生产的同时.狠抓质量管理,不定时抽查口罩质量,该厂质检人员从某日所生产的口罩中随机抽取了100个,将其质量指标值分成以下五组:,得到如下频率分布直方图.

1)规定:口罩的质量指标值越高,说明该口罩质量越好,其中质量指标值低于130的为二级口罩,质量指标值不低于130的为一级口罩.现从样本口罩中利用分层抽样的方法随机抽取8个口罩,再从中抽取3个,记其中一级口罩个数为,求的分布列及数学期望;

2)在2020五一劳动节前,甲,乙两人计划同时在该型号口罩的某网络购物平台上分别参加两店各一个订单秒杀抢购,其中每个订单由个该型号口罩构成.假定甲、乙两人在两店订单秒杀成功的概率分别为,记甲、乙两人抢购成功的订单总数量、口罩总数量分别为

①求的分布列及数学期望

②求当的数学期望取最大值时正整数的值.

【答案】1)见解析,2)①见解析;②6

【解析】

1)根据分层抽样可得二级、一级口罩个数,然后写出的所有可得取值并计算相应的概率,列出分布列并根据数学期望公式可得结果.

2)①写出写出的所有可得取值并计算相应的概率,列出分布列并根据数学期望公式可得结果.②根据,使用换元法并构造函数,然后利用导数判断函数单调性,进一步可得取最大值的条件.

1)按分层抽样抽取8个口罩,则其中二级、一级口罩个数分别为62.故的可能取值为012

的分布列为

0

1

2

所以

2)①由题知的可能取值为012

所以的分布列为

0

1

2

所以

②因为

所以

因为

所以当时,

所以在区间上单调递增;

时,

所以在区间上单调递减;

所以当取最大值,

所以

所以取最大值时,的值为6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】人们通常以分贝(符号是)为单位来表示声音强度的等级,30~40分贝是较理想的安静环境,超过50分贝就会影响睡眠和休息,70分贝以上会干扰谈话,长期生活在90分贝以上的嗓声环境,会严重影响听力和引起神经衰弱、头疼、血压升高等疾病,如果突然暴露在高达150分贝的噪声环境中,听觉器官会发生急剧外伤,引起鼓膜破裂出血,双耳完全失去听力,为了保护听力,应控制噪声不超过90分贝,一般地,如果强度为的声音对应的等级为,则有,则的声音与的声音强度之比为(

A.10B.100C.1000D.10000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,实轴长为4,渐近线方程为,点N在圆上,则的最小值为( )

A. B. 5C. 6D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三角形的边长为2 分别在三边上, 的中点,

(Ⅰ)当时,求的大小;

(Ⅱ)求的面积的最小值及使得取最小值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一颗棋子从三棱柱的一个项点沿棱移到相邻的另一个顶点的概率均为,刚开始时,棋子在上底面点处,若移了次后,棋子落在上底面顶点的概率记为.

1)求的值:

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用

A.288B.264C.240D.168

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点个数;

2)若有两个极值点,试判断的大小关系并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥中,,△为等边三角形,二面角的余弦值为,当三棱锥的体积最大时,其外接球的表面积为.则三棱锥体积的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四点均在函数fx)=log2的图象上,若四边形ABCD为平行四边形,则四边形ABCD的面积是(

A.B.C.D.

查看答案和解析>>

同步练习册答案