精英家教网 > 高中数学 > 题目详情
已知f(x)=kx-lnx,且在x>1的范围上单调递增,求f(x)值域.
考点:函数的值域,函数单调性的性质
专题:函数的性质及应用
分析:先根据条件求出k的取值范围,再根据函数的单调性求得值域.
解答: 解:函数f(x)=kx-lnx在区间(1,+∞)单调递增,
∴当x>1时,f′(x)=k-
1
x
≥0,∴k-1≥0,
∴k≥1,
∴f(x)min=k-ln1=k=1,
故函数f(x)值域为(1,+∞)
点评:本题主要考查利用导数研究函数的单调性,函数的单调性的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合M={x|x=3n+1,n∈Z},N={y|y=3n-1,n∈Z},若x0∈M,y0∈N,则x0y0与M,N的关系是(  )
A、x0y0∈M
B、x0y0∈N
C、x0y0∈M∩N
D、x0y0∉M∪N

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(-∞,+∞)上的奇函数,当x∈(-∞,0)时,f(x)=x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,若f(
C
2
)=-
1
4
,a=2,c=2
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设动点P在椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上且不在x轴上,A1、A2是椭圆C的左、右顶点,直线PA1、PA2的斜率的积为-
1
4
,F(-
3
,0)为椭圆C的一个焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P在第一象限内,直线l过点P且与椭圆C只有一个公共点,l与圆C′:x2+y2=4相交于两点A、B,求△OAB的面积的最大值,及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(1,0),P是平面上一动点,P到直线l:x=-1上的射影为点N,且满足(
PN
+
1
2
NF
)•
NF
=0
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若直线y=x与曲线C交与点M(异于O点),O为坐标原点.过点M作倾斜角互补的两条直线,分别与曲线C交于A、B两点(异于M).求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,在等比数列{an}中a1a2a3a4=1,a13a14a15a16=8,求a41a42a43a44

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0当-1≤x≤1时,函数y=-x2-ax+b+1的最小值是-4,最大值是0,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,Rt△ABC的斜边BC恰在x轴上,点B(-2,0),C(2,0),且AD为BC边上的高.
(1)求AD中点G的轨迹方程;
(2)若过点(1,0)的直线l与(1)中G的轨迹交于两不同点P、Q,试问在x轴上是否存在定点E(m,0),使
PE
QE
恒为定值λ?若存在,求出点E的坐标及实数λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案