精英家教网 > 高中数学 > 题目详情
9.在等腰梯形ABCD中,AB=2CD=2,∠DAB=60°,E是AB的中点,将△ADE与△BEC分别沿ED,EC向上折起,使A,B重合于点P,若三棱锥P-CDE的各个顶点在同一球面上,则该球的表面积为(  )
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{6}π}{2}$C.$\frac{\sqrt{6}π}{8}$D.$\frac{3π}{2}$

分析 判定三棱锥的形状,然后求出它的外接球的半径,再求表面积.

解答 解:易证所得三棱锥为正四面体,它的棱长为1,
故外接球半径为$\frac{\sqrt{6}}{4}$,外接球的表面积为:4π$(\frac{\sqrt{6}}{4})^{2}$=$\frac{3π}{2}$,
故选:D.

点评 本题考查球的内接多面体,球的体表面积等知识,考查逻辑思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知第一限象的点(m,n)在直线9x+y=1上,则$\frac{1}{m}+\frac{1}{n}$的最小值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$).
(I)求函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)在区间[$\frac{π}{8},\frac{3π}{4}$]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知区域D是由不等式组$\left\{\begin{array}{l}{x-2y≥0}\\{x+3y≥0}\end{array}$所确定的,则圆x2+y2=4在区域D内的面积等于$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的偶函数f(x),满足f(x+1)=-f(x),且f(x)在[-1,0]上是增函数,
①f(x)为周期函数;      
②f(x)的图象关于x=1对称;      
③f(x)在[0,1]上为增函数;
④f(x)在[1,2]上为减函数;   
⑤f(2)=f(0).
则上述说法正确的有①②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx+${∫}_{1}^{2}$$\frac{1}{x}$dx=$\frac{π}{4}$+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合A={0,2,3},B={x+1,x},A∩B={3},则实数x的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)图象的一个对称中心为($\frac{π}{12}$,0),且图象上相邻两条对称轴间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调减区间;
(3)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos(α+$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若数列{an}满足a1=1,a2=2,an=an-1+an-2(n∈N*,n>2),则a6=(  )
A.13B.8C.21D.10

查看答案和解析>>

同步练习册答案