精英家教网 > 高中数学 > 题目详情
2.若点P(x,y)是区域$\left\{\begin{array}{l}1≤x+y≤3\\ 1≤y-x≤3\end{array}\right.$内的任意一点,且为直线y=kx上的点,则实数k的取值范围是(  )
A.$[-\frac{1}{2},\frac{1}{2}]$B.[-2,2]C.(-∞,-2]∪[2,+∞)D.$(-∞,-\frac{1}{2}]∪[\frac{1}{2},+∞)$

分析 作出不等式组对应的平面区域,直线y=kx过定点(0,0),利用数形结合即可得到结论.

解答 解:画出不等式组$\left\{\begin{array}{l}1≤x+y≤3\\ 1≤y-x≤3\end{array}\right.$对应的平面区域阴影部分,
如图所示;
由直线y=kx过原点O(0,0),
要使直线y=kx与区域Ω有公共点,
则直线的斜率k≥kOC,或k≤kOA
由$\left\{\begin{array}{l}{x+y=1}\\{y-x=3}\end{array}\right.$,解得A(-1,2),
由$\left\{\begin{array}{l}{x+y=3}\\{y-x=1}\end{array}\right.$,解得C(1,2),
此时kOA=$\frac{2}{-1}$=-2,kOC=$\frac{2}{1}$=2;
∴实数k的取值范围是(-∞,-2]∪[2,+∞).
故选:C.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解题的关键,利用数形结合是解题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若实数x、y满足|x|≤y≤1,则x2+y2+2x的最小值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-1|-|2x+1|的最大值为m
(1)作函数f(x)的图象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(理)已知是虚数单位,若$\frac{3+ai}{1-i}$是纯序数,则实数a的值为(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,以原点为圆心,椭圆C的短半轴长为半径的圆与直线$x-y+\sqrt{2}=0$相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交与A,B两点,O为坐标原点,则在椭圆C上是否存在点P,使得四边形OAPB为平行四边形?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,底面为平行四边形的四棱柱ABCD-A'B'C'D'中,DD'⊥平面ABCD,∠DAB=$\frac{π}{3}$,AB=2AD,DD'=3AD,E、F分别是线段AB、D'E的中点.
(Ⅰ)求证:CE⊥DF;
(Ⅱ)求四棱锥F-AECD与四棱柱ABCD-A'B'C'D'的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线2x+my=2m-4与直线mx+2y=m-2平行的充要条件是(  )
A.m=0B.m=±2C.m=2D.m=-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC中,AC=$\sqrt{2}$,BC=$\sqrt{6}$,△ABC的面积为$\frac{{\sqrt{3}}}{2}$,若线段BA的延长线上存在点D,使∠BDC=$\frac{π}{4}$,则CD=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a,b,c且$\frac{b}{a}$cosC+$\frac{c}{a}$cosB=3cosB.
(1)求sinB;
(2)若D为AC边的中点,且BD=1,求△ABD面积的最大值.

查看答案和解析>>

同步练习册答案