精英家教网 > 高中数学 > 题目详情
10.已知全集U=R,集合A={x|y=log2(-x2+2x)},B={y|y=1+$\sqrt{2x+1}$},那么A∩(∁UB)=(  )
A.{x|0<x<1}B.B{x|x<0}C.{x|x>2}D.{x|1<x<2}

分析 先求出集合A,B,从而求出CUB,由此能求出A∩(∁UB).

解答 解:∵全集U=R,集合A={x|y=log(-x2+2x)}={x|0<x<2},
B={y|y=1+$\sqrt{2x+1}$}={y|y≥1},
∴CUB={y|y<1},
∴A∩(∁UB)={x|0<x<1}.
故选:A.

点评 本题考查补集、交集的求法,是基础题,解题时要认真审题,注意补集、交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,已知a=$\sqrt{3}$-1,b=$\frac{\sqrt{6}}{2}$,C=$\frac{π}{4}$,则△ABC是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数f(x),周期为4,当x∈[0,4)时,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,0≤x<2}\\{2x-4,2≤x<4}\end{array}\right.$,当x∈(-4,b)时,函数y=f(x)-1有5个零点,则实数b的取值范围为(  )
A.(5,$\frac{13}{2}$]B.[5,$\frac{13}{2}$)C.(5,$\frac{13}{2}$)D.[5,$\frac{13}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{{\begin{array}{l}{-{x^2}+2x}&{x∈({-∞,2})}\\{3f({x-2})}&{x∈[{2,+∞})}\end{array}}$,则函数g(x)=f(x)-cosπx在区间[0,6]内所有零点的和为(  )
A.18B.20C.36D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有如下四个命题:
①若a⊥α,b⊥α,则a∥b
②空间中,若a⊥b,a⊥c,则a∥b
③若a⊥α,b⊥a,则b∥α
④若a⊥α,b∥a,b?β,则α⊥β,
其中为正确命题的是(  )
A.①②B.①④C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.甲、乙两人参加歌唱比赛,晋级概率分别为$\frac{4}{5}$和$\frac{3}{4}$,且两人是否晋级相互独立,则两人中恰有一人晋级的概率为(  )
A.$\frac{19}{20}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{7}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.为了解某市居民用水情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据分成[0,0.5),[0.5,1),…,[4,4.5)9组,绘制成了如图所示的频率分布直方图.由图可知,居民月均用水量的众数、中位数的估计值分别为(  )
A.2.25,2.25B.2.25,2.02C.2,2.5D.2.5,2.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{-2x,x>0}\end{array}\right.$,则f(f(-1))=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知|cosθ|=-cosθ且tanθ<0,则代数式lg(sinθ-cosθ)>0(填“>”“<”)

查看答案和解析>>

同步练习册答案