精英家教网 > 高中数学 > 题目详情
双曲线
x2
4
-y2=1的一个焦点坐标是(  )
A、(-
5
,0)
B、(-2,0)
C、(
3
,0)
D、(1,0)
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据双曲线的方程和性质即可得到结论.
解答: 解:双曲线
x2
4
-y2=1中a=2,b=1,
∴c=
5

∴双曲线
x2
4
-y2=1的一个焦点坐标是(-
5
,0).
故选:A.
点评:本题主要考查双曲线的性质和方程,根据a,b,c之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=
ax+1;-1≤x<0
bx+2
x+1
;0≤x≤1
,其中a,b∈R,若f(
1
2
)=f(
3
2
),则a-2b的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在古希腊,毕达哥拉斯学派把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形(如图):

则第七个三角形数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x3-4x在点(1,-3)处的切线方程为(  )
A、x+y+2=0
B、x+y+1=0
C、2x-y+5=0
D、x-y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,AD=DB,F在线段CD上,设
AB
=
a
AC
=
b
AF
=x
a
+y
b
,则
1
x
+
4
y
的最小值为(  )
A、6+2
2
B、9
3
C、9
D、6+4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
y≤x
2x-3y≤0
x+y≤10
x-3y-a≤0
表示的平面区域是三角形,则a的取值范围是(  )
A、a≥0或-10<a≤-6
B、-10<a≤-6
C、-10<a<-6
D、a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=lnx,下列结论正确的是(  )
A、f(x)没有零点
B、f(x)没有极值点
C、f(x)有极大值点
D、f(x)有极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+5x2+3x-9,则函数f(x)的单调递增区间是(  )
A、[-
5
3
,+∞)
B、(-∞,-3]
C、[-3,-
1
3
]
D、(-∞,-3],[-
1
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各角中,与角
3
终边相同的角是(  )
A、-
π
3
B、-
3
C、
π
3
D、
3

查看答案和解析>>

同步练习册答案