精英家教网 > 高中数学 > 题目详情
18.求解关于x的不等式:3x2-ax-a>0.

分析 对△=a2+12a与0的大小关系分类讨论,利用一元二次方程的实数根与判别式的关系、一元二次不等式的解集与△的关系即可得出.

解答 解:①△=a2+12a=0,解得a=0或-12.
a=0时,不等式化为:3x2>0,解得x≠0,解集为{x|x∈R,x≠0}.
a=-12时,不等式化为:3x2+12x+12>0,即(x+2)2>0,
解得x≠-2,解集为{x|x∈R,x≠-2}.
②由△<0,解得-12<a<0,则3x2-ax-a>0的解集为R.
③由△>0,解得a<-12,或0<a,由3x2-ax-a=0,
解得x1=$\frac{a-\sqrt{{a}^{2}+12a}}{6}$,x2=$\frac{a+\sqrt{{a}^{2}+12a}}{6}$,
则3x2-ax-a>0的解集为{x|x<x1或x>x2}.
综上可得:①a=0时,不等式的解集为{x|x∈R,x≠0}.
a=-12时,不等式的解集为{x|x∈R,x≠-2}.
②-12<a<0,不等式的解集为R.
③a<-12,或0<a,不等式解集为{x|x<$\frac{a-\sqrt{{a}^{2}+12a}}{6}$,或x>$\frac{a+\sqrt{{a}^{2}+12a}}{6}$}.

点评 本题考查了一元二次不等式的解法、一元二次方程的实数根与判别式的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.方程($\frac{1}{3}$)x+x-2=0的解的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.有6个人站成一排,甲乙两人都站在丙的同侧的不同站法有480种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题正确的是(  )
A.命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x∈R,使得x2-3x-2≤0”
B.“命题p∨q为真命题”是“命题p∧q为真命题”的充分不必要条件
C.?m∈R,使f(x)=mx${\;}^{{m^2}+2m}}$是幂函数,且函数f(x)在(0,+∞)上单调递增
D.若数据x1,x2,x3,…,xn的方差为1,则2x1,2x2,2x3,…,2xn的方差为2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若一个球内切于一个圆柱,则该圆柱的底面半径R与母线l的关系是(  )
A.R=lB.l=2RC.l=$\frac{1}{2}$RD.l与R没有关系

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在正方体ABCD-A′B′C′D′,E为A′D′的中点,则异面直线EC与BC′所成角的余弦值为$\frac{\sqrt{2}}{6}$,二面角A′-BC′-D的平面角的正切值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=$\frac{\sqrt{3}}{2}$,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4$\sqrt{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$的值;
(Ⅲ)求四边形MF1NF2面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=|x-1|+|x-2|.
(1)求不等式f(x)<3的解集;
(2)不等式f(x)≤a(x+$\frac{1}{2}$)的解集非空,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={1,2,3,4,5,6,7}.
(1)满足{1,2,3}⊆B⊆A的集合B的个数是16;
(2)若C是A的含有4个元素的子集,且满足对任意的x,x∈C,都满足x+1∈C或x-1∈C,则集合C的个数是4.

查看答案和解析>>

同步练习册答案