精英家教网 > 高中数学 > 题目详情
9.已知f(x)=x2ex(e为自然对数的底),若存在唯一的x0∈[-1,1],使得f(x0)=m在m∈[t-2,t]上恒成立,则实数t的取值范围是(  )
A.[1,e]B.(1+$\frac{1}{e}$,e]C.(2,e]D.(2+$\frac{1}{e}$,e]

分析 根据导数求出函数的最值,再根据存在唯一的x0∈[-1,1],使得f(x0)=m在m∈[t-2,t]上恒成立,得到$\frac{1}{e}$<f(x0)≤e,即$\frac{1}{e}$<m≤e,得到关于t的不等式组,解得即可.

解答 解:函数f(x)=x2ex的导数为f′(x)=2xex+x2ex =xex(x+2),x∈[-1,1],
令f′(x)=0,则x=0,
当f′(x)>0时,即0<x≤1,当f′(x)<0时,即-1≤x<0,
∴f(x)在(-1,0)单调递减,在(0,1]上单调递增,
∴f(x)min=f(0)=0,f(-1)=$\frac{1}{e}$,f(1)=e,
∴f(x)max=f(1)=e,
∵存在唯一的x0∈[-1,1],使得f(x0)=m在m∈[t-2,t]上恒成立,
∴$\frac{1}{e}$<f(x0)≤e,
∴$\frac{1}{e}$<m≤e,
∵m∈[t-2,t]上恒成立,
∴$\left\{\begin{array}{l}{t-2>\frac{1}{e}}\\{t≤e}\end{array}\right.$,
解得2+$\frac{1}{e}$<t≤e,
故选:D

点评 本题考查了导数函数的最值问题,以及参数的取值范围,考查了存在性和恒成立的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设集合A={x|x2-3x-10≤0},B={x|m-1≤x≤2m+1}.
(1)当x∈Z时,求A的非空真子集的个数;
(2)若A?B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)=$\frac{{e}^{x}}{1+a{x}^{2}}$,其中a为正实数,若f(x)为R上的单调递增函数,则a的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a,b∈R+,且a≠b,a+b=2,则必有 (  )
A.1≤ab≤$\frac{{a}^{2}+{b}^{2}}{2}$B.$\frac{{a}^{2}+{b}^{2}}{2}$<ab<1C.ab<$\frac{{a}^{2}+{b}^{2}}{2}$<1D.1<ab<$\frac{{a}^{2}+{b}^{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某家电专卖店试销A,B,C三种新型空调,销售情况记录如表:
第一周第二周第三周第四周第五周
A型数量(台)101015A4A5
B型数量(台)101213B4B5
C型数量(台)15812C4C5
(Ⅰ)为跟踪调查空调的使用情况,根据销售记录,从该家电专卖店前三周售出的所有空调中随机抽取一台,求抽到的空调“是B型空调或是第一周售出空调”的概率;
(Ⅱ)为跟踪调查空调的使用情况,根据销售记录,从该家电专卖店第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.众所周知,乒乓球是中国的国球,乒乓球队内部也有着很严格的竞争机制,为了参加国际大赛,种子选手甲与三位非种子选手乙、丙、丁分别进行一场内部对抗赛,按以往多次比赛的统计,甲获胜的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,且各场比赛互不影响.
(1)若甲至少获胜两场的概率大于$\frac{7}{10}$,则甲入选参加国际大赛参赛名单,否则不予入选,问甲是否会入选最终的大名单?
(2)求甲获胜场次X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设正实数x,y满足xy=$\frac{x+2y}{2x-4y}$,则实数x的最小值为$1+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在长方体ABCD-A1B1C1D1中,AB=1,AD=2,则$\overrightarrow{BD}$•$\overrightarrow{A{C}_{1}}$=(  )
A.1B.0C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(I)已知$cos(π+α)=-\frac{1}{2}$,α为第一象限角,求$cos(\frac{π}{2}+α)$的值;
(II)已知$cos(\frac{π}{6}-β)=\frac{1}{3}$,求$cos(\frac{5π}{6}+β)•sin(\frac{2π}{3}-β)$的值.

查看答案和解析>>

同步练习册答案