精英家教网 > 高中数学 > 题目详情
2.$\int_0^1{(\sqrt{x}+x)dx=}$$\frac{7}{6}$.

分析 根据定积分的计算法则计算即可.

解答 解:${∫}_{0}^{1}$($\sqrt{x}$+x)dx=($\frac{2}{3}$${x}^{\frac{3}{2}}$+$\frac{1}{2}$x2)|${\;}_{0}^{1}$=$\frac{2}{3}$+$\frac{1}{2}$=$\frac{7}{6}$,
故答案为:$\frac{7}{6}$

点评 本题考查了定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=4x,直线l:x=-1.
(1)若曲线C上存在一点Q,它到l的距离与到坐标原点的距离相等,求Q的坐标;
(2)过直线l上任一点P作抛物线的两条切线,切点记为A,B,求证:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=\frac{3}{x-4}+\sqrt{{2^x}-4}$的定义域是(  )
A.[2,4)B.[2,4)∪(4,+∞)C.(2,4)∪(4,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\sqrt{1-{3}^{x}}$+$\frac{1}{{x}^{2}}$的定义域为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2-ax-lnx(a∈R).
(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.记[x]为不超过实数x的最大整数,例如:[2]=2,[1.5]=1,[-0.3]=-1,设a为正整数,数列{xn}满足:x1=a,${x_{n+1}}=[\frac{{{x_n}+[\frac{a}{x_n}]}}{2}](n∈{N^*})$,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时,总有xn=xk
③当n≥1时,${x_n}>\sqrt{a}-1$;
④对某个正整数k,若xk+1≥xk,则${x_n}=[\sqrt{a}]$;
其中的真命题个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=-2sin2x+2$\sqrt{3}$sinxcosx+1
(Ⅰ)求f(x)的最小正周期及对称中心
(Ⅱ)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx的反函数为G(x),函数g(x)=$\frac{{e}^{ax}}{x}$在[1,+∞)上是增函数.
(Ⅰ)求实数a的最小值;
(Ⅱ)若x0是f(x)=$\frac{1}{G(x)}$的根且x0∈(1,2),当a=1时,函数m(x)=min{xf(x),$\frac{1}{g(x)}$}的图象与直线y=n(n∈R)在(1,+∞)上的交点的横坐标为x1,x2(x1<x2),证明:x1+x2>2x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\frac{1}{2}$,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=(  )
A.1B.$\sqrt{3}$C.2D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案