精英家教网 > 高中数学 > 题目详情
20.对于平面直角坐标系中任意两点P(x1,y1),Q(x2,y2),我们将|x1-x2|+|y1-y2|定义为PQ两点的“耿直距离”.已知A(0,0),B(3,1),C(4,4),D(1,3),设M(x,y)是平面直角坐标系中的一个动点.若使得点M到A、B、C、D的“耿直距离”之和取得最小值,则点M应位于下列哪个图中的阴影区域之内.(  )
A.B.C.D.

分析 通过所求图形,求出最小值,利用特殊点求解点M到A、B、C、D的“耿直距离”之和判断即可.

解答 解:由题意可知M(2,2)满足椭圆,点M到A、B、C、D的“耿直距离”之和为:12.
当M(1,1)时,点M到A、B、C、D的“耿直距离”之和为12.排除C,
当M(0,0)时,点M到A、B、C、D的“耿直距离”之和为16.排除A,
当M(1,3)时,点M到A、B、C、D的“耿直距离”之和为12.排除D,
故选:B.

点评 本题考查新定义的应用,特殊法求解选择题的方法,考查计算能力,分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若(2x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4=(  )
A.-119B.-120C.-121D.41

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆M:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1,过点P(1,2)的直线l与x,y轴正半轴围成的三角形面积最小时,l恰好经过曲线M的两个顶点A,B.
(1)求椭圆M的方程;
(2)直线l交曲线M于点C,D(异于A,B)两点,求四边形ABCD面积最大时,直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sinxcosxcosφ+cos2xsinφ+$\frac{1}{2}$sin(π+φ)(0<φ<π),其图象过点($\frac{π}{4},\frac{1}{4}$)
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)图象向右平移$\frac{π}{12}$个单位长度,得到函数y=g(x)的图象,求函数g(x)在[0,π]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过点A(2,-4)且与直线2x-y+3=0平行的直线方程为(  )
A.x+2y-8=0B.2x-y-8=0C.x+2y-4=0D.2x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题“对任意x∈R,都有x2<0”的否定为(  )
A.对任意x∈R,都有x2≤0B.不存在x∈R,使得x2<0
C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C:(x-1)2+(y-1)2=9,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)若m=0,求直线被圆C截得的弦长;
(2)证明:不论m取什么实数,直线l与圆恒交于两点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题“若x2<1,则-1<x<1”的否命题是(  )
A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1
C.若x≥1或x≤-1,则x2≥1D.若x≥1且x≤-1,则x2≥1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,BC=2,B=$\frac{π}{3}$,若△ABC的面积为$\frac{\sqrt{3}}{2}$,则AC=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案