精英家教网 > 高中数学 > 题目详情
设等比数列{an}的前n项和为Sn,公比为q.
(1)如果S6=
189
4
,q=
1
2
,求a1
(2)如果S3=14,a1=2,求q;
(3)如果a1+a3+a5=21,a2+a4+a8=42,求Sn
(4)如果S5=15,S10=60,求S15
考点:等比数列的前n项和,等比数列的通项公式
专题:等差数列与等比数列
分析:(1)由已知条件得S6=
a1(1-
1
26
)
1-
1
2
=
189
4
,由此能求出a1
(2)由已知得
2(1-q3)
1-q
=14,整理,由此能求出q.
(3)由已知得
a1+a1q2+a1q4=21
a1q+a1q3+a1q5=42
,由此能求出Sn
(4)等比数列{an}中,S5,S10-S5,S15-S10也成等比数列,由此能求出S15
解答: 解:(1)∵等比数列{an}中,
S6=
189
4
,q=
1
2

S6=
a1(1-
1
26
)
1-
1
2
=
189
4

解得a1=24.
(2)等比数列{an}中,
∵S3=14,a1=2,
2(1-q3)
1-q
=14,整理,得q2+q-6=0,
解得q=-3或q=2;.
(3)等比数列{an}中,
∵a1+a3+a5=21,a2+a4+a8=42,
a1+a1q2+a1q4=21
a1q+a1q3+a1q5=42

解得a1=1,q=2,
∴Sn=
1-2n
1-2
=2n-1.
(4)等比数列{an}中,
S5,S10-S5,S15-S10也成等比数列,
∵S5=15,S10=60,
∴15,45,S15-60成等比数列,
∴15(S15-60)=452
解得S15=195.
点评:本题考查等比数列的通项公式和前n项和公式的应用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求和:4n+3•4n-1+32•4n-2+…+3n-1•4+3n(n∈N*)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

y=x0.3的导数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(6,-4),B(4,8),求线段AB的垂直平分线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的公比q>1,前n项和为Sn,S3=7,且a1+2,2a2,a3+1成等差数列,数列{bn}的前n项和为Tn,6Tn=(3n+1)bn+2,其中n∈N*
(1)求数列{an}和数列{bn}的通项公式;
(2)设A={a1,a2,…,a9},B={b1,b2,…,b38},C=A∪B,求集合C中所有元素之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

求导:f(x)=
2x
x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+3x-2,-3≤x≤1
ln
1
x
1<x≤3
,若g(x)=ax-|f(x)|的图象与x轴有3个不同的交点,则实数a的取值范围是(  )
A、[
ln3
3
1
e
B、(0,
1
2e
C、(0,
1
e
D、[
ln3
3
1
2e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x|,g(x)=-|x-4|+m
(Ⅰ)解关于x的不等式g[f(x)]+2-m>0;
(Ⅱ)若函数f(x)的图象恒在函数g(x)图象的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(-8-7i)(-3i),则z在复平面内对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步练习册答案