精英家教网 > 高中数学 > 题目详情
20.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,点$B(0,\sqrt{3})$为短轴的一个端点,∠OF2B=60°.
(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.

分析 (1)由题意可得b=$\sqrt{3}$,运用直角三角形正弦函数可得a=2,进而得到椭圆方程;
(2)设P(x1,y1),M(2,y0),求出A,B坐标,运用三点共线的条件:斜率相等,求得直线m的方程,由恒过定点方法,即可得证.

解答 解:(1)由条件∠OF2B=60°,
可得|BF2|=$\frac{\sqrt{3}}{sin60°}$=2,
则$a=2,b=\sqrt{3}$,
故所求椭圆方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$;
( 2 )证明:设P(x1,y1),M(2,y0),直线l:x=2,
A(-2,0),由A,P,M共线可得$\frac{{y}_{1}}{{x}_{1}+2}$=$\frac{{y}_{0}}{4}$,
直线BP的斜率为k2=$\frac{{y}_{1}}{{x}_{1}-2}$,直线m的斜率为km=$\frac{2-{x}_{1}}{{y}_{1}}$,
则直线m的方程为y-y0=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2),
即y=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2)+y0=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2)+$\frac{4{y}_{1}}{{x}_{1}+2}$
=$\frac{2-{x}_{1}}{{y}_{1}}$[(x-2)+$\frac{4{{y}_{1}}^{2}}{4-{{x}_{1}}^{2}}$]
=$\frac{2-{x}_{1}}{{y}_{1}}$[(x-2)+$\frac{12-3{{x}_{1}}^{2}}{4-{{x}_{1}}^{2}}$]=$\frac{2-{x}_{1}}{{y}_{1}}$(x+1),
当x=-1时,y=0.
所以直线m过定点(-1,0).

点评 本题考查椭圆方程的求法,以及直线恒过定点的求法,注意运用直线方程和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.过三点A(1,3),B(4,2),C(1,-7)的圆M交于y轴于P、Q两点.
(1)求线段PQ的长;
(2)动圆N的圆心N在直线2x-y+6=0上运动,半径为10,若圆N与圆M有公共点,求点N横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,$g(x)=\frac{f(x)}{x}(x≠0)$
(Ⅰ)判断函数g(x)的奇偶性;
(Ⅱ)证明函数g(x)在(0,+∞)上为减函数;
(Ⅲ)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=ax2-bx+6lnx+15,其中a∈R,曲线y=f(x)在x=1和x=6处的切线都与直线$y=-\frac{1}{2}x+3$垂直.
(1)确定a,b的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个几何体的三视图如图所示,则该几何体的体积为40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,点F是抛物线C:x2=2y的焦点,点P(x1,y1)为抛物线上的动点(P在第一象限),直线PF交抛物线C于另一点Q,直线l与抛物线C相切于点P.过点P作直线l的垂线交抛物线C于点R.
(1)求直线l的方程(用x1表示);
(2)求△PQR面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{alnx+b}{x}$(a≤2且a≠0),函数f(x)在点(1,f(1))处的切线过点(3,0)
(1)求函数f(x)的单调区间;
(2)若函数f(x)与函数g(x)=a+2-x-$\frac{2}{x}$的图象在区间(0,2)有且只有一个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}满足:a1=$\frac{1}{2}$,a1,a2,a3-$\frac{1}{8}$成等差数列,公比q∈(0,1)
(1)求数列{an}的通项公式;
(2)设bn=2nan,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不共线的非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{b}$|=|-2$\overrightarrow{a}$|,则向量2$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案