精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数的值域;

2)在中,角所对的边分别为,求的值;

3)请叙述余弦定理(写出其中一个式子即可)并加以证明.

【答案】1;(22;(3)详见解析

【解析】

1)推导出fxcosx2sinx),由此能求出函数fx)的值域.

2)由fB)=2,得到fB)=2sinB)=2B0π),求出B,由余弦定理得:3a2+c22accos,由△ABC面积Sac1,由此能求出a+c

3)建立坐标系,用解析法即可证明余弦定理.

1)∵

fxsinxcosx2sinx),

∴由xR,可得:fx)=2sinx[22]

2)∵△ABC中,角ABC的对边分别为abcfB)=2

fB)=2sinB)=2B0π),

B

b,∴由余弦定理得:3a2+c22accos

∵△ABC面积S,∴acsinBac,解得ac1

a2+c23+2accos3ac2

∴(a+c2a2+c2+2ac2+24

a+c2

3)证明:余弦定理为:a2b2+c22bccosA

下用解析法证明:以A为原点,射线ABx轴正向,建立直角坐标系,则得A00),Bc0),CbcosAbsinA).

由两点距离公式得:

a2|BC|2=(cbcosA2+(﹣bsinA2b2+c22bccosA

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的导数的单调性;

2)若有两个极值点,求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若,试证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点,若为线段上的动点(不含.

1)平面与平面是否互相垂直?如果是,请证明;如果不是,请说明理由;

2)求二面角的余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20173月郑州市被国务院确定为全国46个生活垃圾分类处理试点城市之一,此后由郑州市城市管理局起草公开征求意见,经专家论证,多次组织修改完善,数易其稿,最终形成《郑州市城市生活垃圾分类管理办法》(以下简称《办法》).《办法》已于2019926日被郑州市人民政府第35次常务会议审议通过,并于2019121日开始施行.《办法》中将郑州市生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾4类.为了获悉高中学生对垃圾分类的了解情况,某中学设计了一份调查问卷,500名学生参加测试,从中随机抽取了100名学生问卷,记录他们的分数,将数据分成7组:,并整理得到如下频率分布直方图:

1)从总体的500名学生中随机抽取一人,估计其分数不低于60的概率;

2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间内的学生人数,

3)学校环保志愿者协会决定组织同学们利用课余时间分批参加垃圾分类,我在实践活动,以增强学生的环保意识.首次活动从样本中问卷成绩低于40分的学生中随机抽取2人参加,已知样本中分数小于405名学生中,男生3人,女生2人,求抽取的2人中男女同学各1人的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的最值;

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的423日为世界读书日,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间(小时)的频率分布直方图如图所示:

1)求样本学生一个月阅读时间的中位数.

2)已知样本中阅读时间低于的女生有30名,请根据题目信息完成下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.

列联表

总计

总计

附表:

0.15

0.10

0.05

2.072

2.706

3.841

其中:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列{an}anZ)的前n项和为Sn,记S1S2Sn中奇数的个数为bn

(1)若an=n,请写出数列{bn}的前5项;

(2)求证:a1为奇数,aii=234)为偶数数列{bn}是单调递增数列的充分不必要条件;

(3)若ai=bii=123,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求处的切线方程;

2)若,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案