精英家教网 > 高中数学 > 题目详情
4.设f(x)=asin(πx+α)+bcos(πx+β)+4,其中a,b,α,β∈R,且ab≠0,α≠kπ(k∈Z),若f(2009)=5,则f(2015)等于(  )
A.4B.3C.-5D.5

分析 利用诱导公式求得 asinα+bcosβ=-1,由此利用诱导公式求得f(2015)的值.

解答 解:f(x)=asin(πx+α)+bcos(πx+β)+4,其中a,b,α,β∈R,且ab≠0,α≠kπ(k∈Z),
若f(2009)=asin(2009π+α)+bcos(2009π+β)+4=-asinα-bcosβ+4=5,
∴asinα+bcosβ=-1,则f(2015)=asin(2015π+α)+bcos(2015π+β)+4=-asinα-bcosβ+4=5,
故选:D.

点评 本题主要考查诱导公式的应用,求三角函数的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在平行四边形ABCD中,$\overrightarrow{AC}•\overrightarrow{CB}$=0,$2{\overrightarrow{BC}^2}+{\overrightarrow{AC}^2}$-4=0,若将其沿AC折成直二面角D-AC-B,则三棱锥D-AC-B的外接球的表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若f(x)是定义在(0,+∞)的函数,且f(x)>0.满足2f(x)+xf′(x)>0,则下列不等式正确的是(  )
A.2016f(2016)>2015f(2015)B.2016f(2016)<2015f(2015)
C.20152f(2015)<20162f(2016)D.20152f(2015)>20162f(2016)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个四棱锥的底面为正方形,其三视图如图所示,根据图中标出的尺寸(单位:cm),则这个四棱锥的外接球的表面积是13π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=xα,当x∈(1,+∞)时,f(x)-x<0,则(  )
A.0<α<1B.α<1C.α>0D.α<0

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

函数为偶函数,且在单调递增,则的解集为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

函数的图象大致是( )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某苗木公司要为一小区种植3棵景观树,每棵树的成本为1000元,这种树的成活率为$\frac{2}{3}$,有甲、乙两种方案如下;
甲方案:若第一年种植后全部成活,小区全额付款8000元;若第一年成活率不足$\frac{1}{2}$,终止合作,小区不付任何款项;若成活率超过$\frac{1}{2}$,但没有全成活,第二年公司将对没有成活的树补种,若补种的树全部成活,小区付款8000元,否则终止合作,小区付给公司2000元.
乙方案:只种树不保证成活,每棵树小区付给公司1300元.
(1)若实行甲方案,求小区给苗木公司付款的概率;
(2)公司为获得更大利润,应选择哪种方案?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于R上可导的任意函数f(x),若满足f(x)=f(2-x),且(x-1)f′(x)≥0,则必有(  )
A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f(1)

查看答案和解析>>

同步练习册答案