精英家教网 > 高中数学 > 题目详情
11.已知二次函数f(x)=x2,数列{an}的前n项和为sn,点(n,sn)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn},bn=an.2n,Tn是数列{bn}的前n项和,求Tn

分析 (1)由点(n,sn)均在函数y=f(x)的图象上.可得Sn=n2.利用递推式可得an
(2)利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)∵点(n,sn)均在函数y=f(x)的图象上.
∴Sn=n2
当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1.
当n=1时上式也成立,
∴an=2n-1 (n∈N*).
(2)由(1)得知:bn=an.2n=(2n-1)•2n
故Tn=1×2+3×22+5×23+…+(2n-1)×2n
∴2Tn=22+3×23+…+(2n-3)•2n+(2n-1)×2n+1
两式相减的:-Tn=2+2×22+2×23+…+2×2n-(2n-1)×2n+1
=$\frac{4×({2}^{n}-1)}{2-1}$-2-(2n-1)×2n+1=(3-2n)×2n+1-6,
∴Tn=6+(2n-3)×2n+1

点评 本题考查了“错位相减法”与等比数列的前n项和公式、递推式的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在一次恶劣气候的飞行航程中调查男女乘客在机上晕机的情况,其中男晕机人数24人,不晕机人数31人;女晕机人数8人,不晕机人数26人.
P(X2≥k)0.0500.0100.001
k3.8416.63510.828
(Ⅰ)根据以上数据作2×2列联表;
(Ⅱ)根据以上数据,能否有95%的把握认为“在恶劣气候飞行中晕机与否跟性别有关”?
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+n+{1}^{n}+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,AB=4$\sqrt{6}$,cosB=$\frac{\sqrt{6}}{6}$,AC边上的中线BD=3$\sqrt{5}$,则sinA=$\frac{\sqrt{70}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}为等比数列,a4+a14=5,a7•a11=6,则$\frac{{{a_{20}}}}{{{a_{10}}}}$=(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{2}{3}或\frac{3}{2}$D.$-\frac{2}{3}或-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\sqrt{{{log}_{\frac{1}{2}}}(4-x)}$的定义域是(  )
A.(-∞,4)B.[3,4)C.(3,4)D.[3,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\sqrt{2-x}$+1g(x-1)的定义域是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=6cos2x-$\sqrt{3}$sin2x
(1)求f(x)的最大值及最小正周期
(2)若α满足f($\frac{α}{2}$)=3-$\frac{2\sqrt{3}}{3}$,求sin(2$α-\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln(x+m+1),m∈R.
(I)若直线y=x+1与函数y=f(x)的图象相切,求m的值;
(Ⅱ)当m≤1时,求证f(x)<ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求满足下列条件的点的坐标;
(1)与点(-2,1)关于x轴对称;
(2)与点(-1,-3)关于y轴对称;
(3)与点(2,-1)关于坐标原点对称;
(4)与点(-1,0)关于y轴对称.

查看答案和解析>>

同步练习册答案