精英家教网 > 高中数学 > 题目详情
设a,b是方程x2+(cotθ)x-cosθ=0的两个不等实根,那么过点A(a,a2)和B(b,b2)的直线与圆x2+y2=1的位置关系是(  )
A、相离B、相切
C、相交D、随θ的值而变化
考点:直线与圆相交的性质
专题:直线与圆
分析:利用韦达定理表示出a+b与ab,求出直线AB的斜率,表示出直线AB,利用点到直线的距离公式求出圆心到直线AB的距离d,与r比较大小即可得到直线与圆的位置关系.
解答: 解:由题意可得,a+b=-cotθ,ab=-cosθ,且cot2θ+4cosθ>0,
又A(a,a2)、B(b,b2),
得到直线AB的斜率k=
a2-b2
a-b
=a+b,
∴直线lAB:y-b2=(b+a)(x-b)即y=(b+a)x-ab,
∴cotθx+y-cosθ=0,
∵圆心(0,0)到直线AB的距离d=
|cosθ|
1+cot2θ
=1=r,
∴直线AB与圆位置关系是相切.
故选B
点评:此题考查了直线与圆相交的性质,涉及的知识有:韦达定理,直线斜率的求法,直线的点斜式方程,点到直线的距离公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一个盒子里装有6枝圆珠笔,其中3枝一等品,2枝二等品,1枝三等品.
(1)从盒子里任取3枝恰有1枝三等品的概率多大;
(2)从盒子里任取3枝,设ξ为取出的3枝里一等品的枝数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}时公差不为零的等差数列,a1=1,a1,a3,a9成等比数列,则数列{an2an}的前n项和sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心为(1,2),半径为1的圆的标准方程为(  )
A、x2+(y-2)2=1
B、x2+(y+2)2=1
C、(x-1)2+(y-2)2=1
D、(x+1)2+(y+2)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,若输入x的值依次是:93,58,86,88,94,75,67,89,55,53,则输出m的值为(  )
A、3B、4C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程|x2-2x-3|-m+5=0有4个根,则m的取值范围为(  )
A、(0,4)
B、(5,9)
C、(0,4]
D、(5,9]

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的奇函数f(x)满足f(x)=f(x+2),且f(1)=0,则f(x)在区间(0,5]上具有零点的最少个数是(  )
A、5B、4C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出平面区域如图所示,若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值为(  )
A、
1
4
B、
3
5
C、4
D、
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知S2=30,S4=150,则a5+a6=
 

查看答案和解析>>

同步练习册答案