精英家教网 > 高中数学 > 题目详情
已知cos(π+α)=
4
5
,α为第三象限角.
(1)求sinα,tanα的值;
(2)求sin(α+
π
4
),tan2α的值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)依题意,利用同角三角函数基本关系可求得sinα,tanα的值;
(2)利用两角和的正弦与正切即可sin(α+
π
4
),tan2α的值.
解答: 解:(1)由条件得cosα=-
4
5
,α为第三象限角,
∴sinα=-
1-cos2α
=-
1-(-
4
5
)
2
=-
3
5
;…(2分)
∴tanα=
sinα
cosα
=
-
3
5
-
4
5
=
3
4
;           …(4分)
(2)由(1)得sin(α+
π
4
)=sinαcos
π
4
+cosαsin
π
4
=(-
3
5
)×
2
2
+(-
4
5
)×
2
2
=-
7
2
10
,…(6分)
tan2α=
2tanα
1-tan2α
=
3
4
1-(-
3
4
)
2
=
24
7
…(8分)
点评:本题考查同角三角函数基本关系的运用,考查两角和的正弦与正切,考查运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(Ⅰ)求证:PC⊥AC;
(Ⅱ)求三棱锥VB-MAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
4
7
3
,sin(α+β)=
5
14
3
,α∈(0,
π
2
),α+β∈(
π
2
,π),求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意实数x,y都有f(xy)=f(x)+f(y)成立.
(1)求f(0)和f(1)的值.
(2)若f(2)=a,f(3)=b(a,b均为常数),求f(36)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
π
12
).
(1)求f(-
π
4
)的值;
(2)若cosθ=
4
5
,θ∈(0,
π
2
),求f(2θ-
π
3
).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠BAC=90°,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=
1
4
AB.
(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1:31,若存在,指出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2x+2my+m2-2m-2=0(m∈R).
(1)若方程表示圆,求实数m的取值范围;
(2)若方程表示的圆C的圆心C(1,1),求经过P(2,4)的圆C的切线方程;
(3)若直线x+y+t=0与(2)中的圆C交于A、B两点,且△ABC是直角三角形,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率是
2
2
,且点P(1,
2
2
)在椭圆上.
(1)求椭圆的方程;
(2)若过点D(0,2)的直线l与椭圆C交于不同的两点E,F,试求△OEF面积的取值范围(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在坡角为15°(∠CAD=15°)的山坡顶上有一个高度为50米的中国移动信号塔BC,在坡底A处测得塔顶B的仰角为45°(∠BAD=45°),则塔顶到水平面AD的距离(BD)约为
 
米.(结果保留整数,
3
≈1.732)

查看答案和解析>>

同步练习册答案