精英家教网 > 高中数学 > 题目详情
5.定义在R上的函数f(x)=$\frac{1}{3}$x3+cx+3(c为常数),f(x)在x=0处的切线与直线y=x+2垂直.
(1)求函数y=f(x)的解析式;
(2)设g(x)=4lnx-f′(x),(其中f′(x)是函数f(x)的导函数),求g(x)的极值.

分析 (1)求出f′(x)=x2+c;然后根据f(x)在x=0处的切线与直线y=x+2垂直,求出f′(0)=c=-1,进而求出函数y=f(x)的解析式即可;
(2)分别求出g(x)、g′(x),然后分两种情况:①当0<x<$\sqrt{2}$和②当x≥$\sqrt{2}$时,讨论求出g(x)的极值即可.

解答 解:(1)f(x)=$\frac{1}{3}$x3+cx+3,f′(x)=x2+c,
因为f(x)在x=0处的切线与直线y=x+2垂直,
所以f′(0)=c=-1,
即f(x)=$\frac{1}{3}$x3-x+3;
(2)由(1),可得g(x)=4lnx-x2+1,x∈(0,+∞),
则g′(x)=$\frac{4}{X}$-2x=$\frac{4-2{x}^{2}}{x}$=-$\frac{2(x+\sqrt{2})(x-\sqrt{2})}{x}$,
①当0<x<$\sqrt{2}$时,g′(x)>0,
可得g(x)在(0,$\sqrt{2}$)上为增函数;
②当x≥$\sqrt{2}$时,g′(x)≤0,
可得g(x)在($\sqrt{2}$,+∞)上为减函数;
所以g(x)在x=$\sqrt{2}$处取得极大值g($\sqrt{2}$)=2ln2-1.

点评 此题主要考查了利用导数求函数的极值以及切线方程的求解问题,考查了分类讨论思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若a+bi=i2,其中a、b∈R,i为虚数单位,则a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.甲、乙、丙、丁、戊5人排成一排照相,要求甲不站在两侧,且乙、丙两人站在一起,那么不同的排法种数为(  )
A.12B.24C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数$f(x)=2alnx+\frac{lnx}{x}$.
(Ⅰ)若$a=-\frac{1}{2}$,求f(x)的极值;
(Ⅱ)若f(x)在定义域上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知($\root{3}{x}$+x22n的展开式中各项系数的和比(3x-1)n的展开式中二项式系数的和大992,求(2x-$\frac{1}{x}$)2n的展开式中:
(1)第10项
(2)常数项;
(3)系数的绝对值最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点P为函数f(x)=ex的图象上任意一点,点Q为圆(x-e2-1)2+y2=1上任意一点(e为自然对数的底),则线段PQ的长度的最小值为$e\sqrt{{e^2}+1}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的前n项和为Sn,设A(a1009,1),B(2,-1),C(2,2)为坐标平面上三点,O为坐标原点,若向量$\overrightarrow{OA}$与$\overrightarrow{OB}$在向量$\overrightarrow{OC}$方向上的投影相同,则S2017为(  )
A.-2016B.-2017C.2017D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在正方体ABCD-A1B1C1D1中,M、E是AB的三等分点,G、N是CD的三等分点,F、H分别是BC、MN的中点,则四棱锥A1-EFGH的左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A={x|-2<x<1},B={x|2x>1},则A∩(∁RB)为(  )
A.(-2,1)B.(-∞,1)C.(0,1)D.(-2,0]

查看答案和解析>>

同步练习册答案