分析 (I)如图所示,连接BE.由于AE是⊙O的直径,可得∠ABE=90°.利用∠E=∠ACB.进而得到△ABE∽△ADC,即可得到.
(II)利用切割线定理可得CF2=AF•BF,可得BF.再利用△AFC∽△CFB,可得$\frac{AF}{FC}$=$\frac{AC}{BC}$,即可得出.
解答
(I)证明:如图所示,连接BE
∵AE是⊙O的直径,∴∠ABE=90°.
又∠E=∠ACB.
∵AD⊥BC,∠ADC=90°.
∴△ABE∽△ADC,∴$\frac{AB}{AD}=\frac{AE}{AC}$,∴AB•AC=AD•AE.
又AB=BC,∴BC•AC=AD•AE.
(II)解:∵CF是⊙O的切线,∴CF2=AF•BF,
∵AF=3,CF=9,∴92=3BF,解得BF=27.
∴AB=BF-AF=24.
∵∠ACF=∠FBC,∠CFB=∠AFC,∴△AFC∽△CFB,
∴$\frac{AF}{FC}$=$\frac{AC}{BC}$,∴AC=$\frac{AF•BC}{CF}$=8.
点评 本题考查了圆的性质、三角形相似、切割线定理,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{2}$ | B. | $\frac{29}{4}$ | C. | 7 | D. | $\frac{27}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com