精英家教网 > 高中数学 > 题目详情
9.已知tanα=2,cosβ=-$\frac{7\sqrt{2}}{10}$,且a,β∈(0,π).
(1)求cos2α的值;
(2)求2α-β的值.

分析 (1)由tanα=2,利用弦化切公式求得cos2α的值;
(2)由(1)中求得的cos2α,结合平方关系求得sin2α,再由已知求得sinβ,结合两角差的正弦求得sin(2α-β),再由2α-β的范围求得答案.

解答 解:(1)∵tanα=2,∴cos2α=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}=\frac{1-4}{1+4}=-\frac{3}{5}$;
(2)由已知tanα=2,α∈(0,π),可得,α∈($\frac{π}{4},\frac{π}{2}$),
∴2α∈($\frac{π}{2},π$),则sin2α=$\sqrt{1-co{s}^{2}2α}=\frac{4}{5}$,
又cosβ=-$\frac{7\sqrt{2}}{10}$,且β∈(0,π),∴β∈($\frac{π}{2},π$),
∴sinβ=$\sqrt{1-co{s}^{2}β}$=$\sqrt{1-(-\frac{7\sqrt{2}}{10})^{2}}=\frac{\sqrt{2}}{10}$.
则sin(2α-β)=sin2αcosβ-cos2αsinβ=$\frac{4}{5}×(-\frac{7\sqrt{2}}{10})-(-\frac{3}{5})×\frac{\sqrt{2}}{10}=-\frac{\sqrt{2}}{2}$.
∵2α∈($\frac{π}{2},π$),β∈($\frac{π}{2},π$),
∴2α-β∈($-\frac{π}{2},\frac{π}{2}$),则2α-β=$-\frac{π}{4}$.

点评 本题考查三角函数中的恒等变换应用,考查了已知三角函数值求角,关键是对角范围的确定,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若△PAD为正三角形,且平面PAD⊥平面ABCD,求PB与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{ln(|x|)}{{{2^x}-{2^{-x}}}}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数$\frac{a+i}{1-i}$为纯虚数,那么实数a=(  )
A.-1B.$-\frac{1}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面四边形ABCD中,AB⊥AD,BC=1,cosB=$\frac{2\sqrt{7}}{7}$,∠ACB=$\frac{2π}{3}$.
(1)求AC的长;
(2)若AD=$\sqrt{21}$,求CD的长和四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设Sn为等差数列{an}(n∈N*)的前n项和,且a1=1,S3=6.
(1)求公差d的值;
(2)Sn<3an,求所有满足条件的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义点P到图形C上每一个点的距离的最小值为点P到图形C的距离,那么平面内到定圆C的距离与到定点A(A在圆C内且不与圆心C重合)的距离相等的点的轨迹是(  )
A.直线B.C.椭圆D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)与g(x)都是定义在区间[x1,x2]上的函数,若对任意x∈[x1,x2],都有(f(x)+g(x))2≤2,则称f(x)和g(x)为“2度相关函数”.若函数f(x)与函数g(x)=x+2在[1,2]上为“2度相关函数”,则函数f(x)的解析式可以为(  )
A.f(x)=x2+2x+1B.f(x)=-3x+2C.f(x)=-x2+2x-4D.f(x)=x+lnx-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等差数列{an}前9项的和为27,则2a8-a11=(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案