精英家教网 > 高中数学 > 题目详情
9.已知集合A={x|$\frac{x-3}{x-2}$>0},B={x||x-1|≤2},则A∩B=(  )
A.(-∞,-1)∪[2,3)B.[-1,2)C.(-∞,-1)∪[2,3)∪(3,+∞)D.(-∞,-1)∪(3,+∞)

分析 求出A与B中不等式的解集确定出A与B,找出A与B的交集即可.

解答 解:由A中不等式解得:x>3或x<2,即A=(-∞,2)∪(3,+∞),
由B中不等式变形得:-2≤x-1≤2,
解得:-1≤x≤3,即B=[-1,3],
则A∩B=[-1,2),
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.y=tan(x+$\frac{π}{4}$)的定义域为(  )
A.$\left\{{x|x≠\frac{π}{4},x∈R}\right\}$B.$\left\{{x|x≠-\frac{π}{4},x∈R}\right\}$C.$\left\{{x|x≠kπ+\frac{π}{4},k∈Z}\right\}$D.{x|x≠kπ-$\frac{π}{4}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,所有棱长都相等的直四棱柱ABCD-A′B′C′D′中,B′D′中点为E′
(Ⅰ)证明:AE′∥平面BC′D;
(Ⅱ)求证:BD⊥AE′.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若${({2x+\frac{{\sqrt{a}}}{x}})^4}$的展开式中常数项为96,则实数a等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.由抛物线y=$\frac{1}{2}$x2与直线y=x+4所围成的封闭图形的面积为(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,直三棱柱ABC-A1B1C1的底面为等边三角形,侧面AA1C1C是正方形,E是A1B的中点,F是棱CC1上的点.
(1)若F是CC1的中点,求证:AE⊥平面A1FB;
(2)当VB-AEF=9$\sqrt{3}$时,求正方形AA1C1C的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,其中a>0,当该区域的面积为4时,z=2x-y的最大值是(  )
A.6B.0C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合P={(x,y)|y=x2},Q={(x,y)|y=2x+3},则P∩Q=(  )
A.{-1,3}B.{(-1,1),(3,9)}C.{1,-3}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.当0<x<$\frac{1}{2}$时,4x<logax,则a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.($\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{2}}{2}$,1)D.(1,$\sqrt{2}$)

查看答案和解析>>

同步练习册答案