精英家教网 > 高中数学 > 题目详情
13.如图,用4种不同颜色涂入四块正方形内,每块一色,相邻两块颜色不同,则共有不同着色方法84种.

分析 需要先给最上面1着色,有4种结果,再给2着色,有3种结果,给3着色,与2同色,给4着色,有3种结果;与2不同色,有2种结果,给4着色,有2种结果,根据分步计数原理得到结果.

解答 解:由题意知本题是一个分步计数问题,
需要先给最上面1着色,有4种结果,
再给2着色,有3种结果,
给3着色,与2同色,给4着色,有3种结果;与2不同色,有2种结果,给4着色,有2种结果
根据分步计数原理知共有4×3×(3+2×2)=84种结果,
故答案为:84.

点评 本题考查分步计数原理,这种问题解题的关键是看清题目中出现的结果,几个环节所包含的事件数在计算时要做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=sinxcosx+sinx+$\frac{2}{5}$cosx(0≤x≤$\frac{π}{2}$),则函数f(x)的最大值为(  )
A.1B.$\frac{7}{5}$C.$\frac{38}{25}$D.$\frac{43}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(2ax+a2-1)-ln(x2+1),其中a∈R.
(1)求f(x)的单调区间;
(2)是否存在a的值,使得f(x)在[0,+∞)上既存在最大值又存在最小值?若存在,求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=tan2x的值域为R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a满足x+lgx=4,b满足x+10x=4,则a+b的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x3+mx2-m2x+1(m为常数,且m>0)在x=1时有极值.
(1)求m的值;
(2)求y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,棱长为1的正方体ABCD-A1B1C1D1
(1)求证:AC⊥平面B1D1DB;
(2)求三棱锥B-ACB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在空间直角坐标系Oxyz中有四点O(0,0,0),A(0,0,3),B(0,3,0),C(2,3,4),则多面体OABC的体积是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是(  )
A.(x-1)2+(y-2)2=25B.(x+1)2+(y+2)2=25C.(x+1)2+(y+2)2=100D.(x-1)2+(y-2)2=100

查看答案和解析>>

同步练习册答案