精英家教网 > 高中数学 > 题目详情
3.若f(x)=ex•ln3x,则f'(x)=ex•ln3x+$\frac{1}{x}$•ex

分析 根据导数的运算法则和复合函数的求导法则计算即可.

解答 解:f(x)=ex•ln3x,则f'(x)=ex•ln3x+$\frac{1}{x}$•ex
故答案为:ex•ln3x+$\frac{1}{x}$•ex

点评 本题考查导数的运算法则和复合函数的求导法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-x+xlnx
(1)求函数f(x)的单调区间;
(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在底面为等腰直角三角形的直三棱柱ABC-A1B1C1中,AB⊥BC,AB=2,AA1=1,D为A1C1的中点,线段B1C上的点M满足$\overrightarrow{{B}_{1}M}$=$\frac{1}{3}$$\overrightarrow{{B}_{1}C}$,求直线BM与面AB1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设全集U=R,A={x|$\frac{1}{4}$≤2x<8},B={x|y=$\sqrt{2-x}$}.
(Ⅰ)求A∩B;
(Ⅱ)若C={x|x2-2(a+3)+a(a+6)<0},∁UA∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=ax3+2x2+1,若f'(-1)=5,则a的值等于(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{5}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=x3+ax2+bx的图象与x轴相切于点(c,0),且f(x)有极大值4,则c=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(x2-x-2)3展开式中x项的系数为-12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=x+ln$\sqrt{x}$在区间[a,b]的值域为[ta,tb],则实数t的取值范围是(1,1+$\frac{1}{2e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin2x-$\sqrt{3}cos2x,x∈[{\frac{π}{3},\frac{11π}{24}}]$.
(I)求函数f(x)的值域;
(II)已知锐角△ABC的两边长分别是函数f(x)的最大值和最小值,且△ABC的外接圆半径为$\frac{{3\sqrt{2}}}{4}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案