精英家教网 > 高中数学 > 题目详情
4.在△ABC中,若a=1,c=$\frac{\sqrt{2}}{2}$,∠C=40°,则符合题意的b的值有2个.

分析 利用余弦定理列出关系式,将a,c及cosC的值代入,得到关于b的一元二次方程,表示出根的判别式,判断其值大于0,得到方程有两个不相等的实数根,即可确定出b的个数.

解答 解:∵a=1,c=$\frac{\sqrt{2}}{2}$,cosC=cos40°,
∴由余弦定理得:c2=a2+b2-2ab•cosC,即$\frac{1}{2}$=1+b2-2b•cos40°,
整理得:2b2-4cos40°b+1=0,
∵△=(4cos40°)2-8>0,
∴方程有2实数根,
则符合题意b的值有2个.
故答案为:2.

点评 此题考查了余弦定理,以及根的判别式与方程解的关系,熟练掌握余弦定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.直线2x-y+1=0关于y轴对称的直线方程是(  )
A.2x+y-1=0B.2x+y+1=0C.2x-y+1=0D.2x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若复数z满足(3-4i)z=5,则z的虚部为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数量{an}中,a1=1,an+1=2an+3.
(1)求证:数列{an+3}是等比数列;
(2)求数列{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知各项都不相等的等差数列{an},a4=10,又a1,a2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$+2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知三边长是公差为1的等差数列,且最大角是最小角的两倍,求三边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,正四棱锥P-ABCD被过棱锥高上O′点且平行底面的平面A′B′C′D′所截,得到正四棱台OO′和较小的棱锥PO′,其中O′分PO为$\frac{PO′}{OO′}$=$\frac{1}{2}$,侧棱PA长为15cm,小棱锥底面边长A′B′为6cm.
(1)求截得棱台的体积.
(2)求棱锥P-ABCD的内切球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将正偶数列{2n}中的所有项按每一行比上一行多一项的规则排成如图数表:记aij是这个数表的第i行第j列的数.例如a43=18.
(1)求该数表前5行所有数之和S;
(2)2012这个数位于第几行第几列?
(3)已知函数fn(x)=$\frac{\root{3}{x-n}}{{3}^{n}}$(其中x>0),设该数表的第n行的所有数之和为bn,数列{f(bn)}的前n项和为Tn,求证Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=$\sqrt{sin(cosx)}$的定义域是{x|-$\frac{π}{2}$$+2kπ≤x≤2kπ+\frac{π}{2}$,k∈Z}.

查看答案和解析>>

同步练习册答案