精英家教网 > 高中数学 > 题目详情
5.已知$α∈[{π,\frac{3π}{2}}]$,$sinα=-\frac{3}{5}$,则tanα=(  )
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

分析 由条件利用同角三角函数的基本关系,求得tanα的值.

解答 解:∵已知$α∈[{π,\frac{3π}{2}}]$,$sinα=-\frac{3}{5}$,∴cosα=$\sqrt{{1-sin}^{2}α}$=-$\frac{4}{5}$,
则tanα=$\frac{sinα}{cosα}$=$\frac{3}{4}$,
故选:D.

点评 本题主要考查同角三角函数的基本关系的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.(1)求函数y=2sin(2x+$\frac{π}{6}$)的单调递增区间.
(2)求函数y=2sin($\frac{π}{6}$-2x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.化简:$\frac{sin(π+α)cos(2π+α)}{sin(-α-π)cos(-π+α)}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个单位共有职工300人,其中男职工180人,女职工120人.用分层抽样的方法从全体职工中抽取一个容量为50的样本,应抽取女职工20人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知曲线C的方程是$\frac{x^2}{m}+{y^2}=1(m∈R$,且m≠0).给出下列三个命题:
①若m>0,则曲线C表示椭圆;
②若m<0,则曲线C表示双曲线;
③若曲线C表示焦点在x轴上的椭圆,则m的值越大,椭圆的离心率越大.
其中,所有正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有3个活动小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学不在一个兴趣小组的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右两个焦点,若椭圆上存在点P使得PF1⊥PF2,则该椭圆的离心率的取值范围是(  )
A.$[{\frac{{\sqrt{5}}}{5},1})$B.$[{\frac{{\sqrt{2}}}{2},1})$C.$({0,\frac{{\sqrt{5}}}{5}}]$D.$({0,\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知p:0≤m≤3,q:(m-2)(m-4)≤0,若p∧q为假,p∨q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在复平面内,复数$\frac{1}{2+i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案