精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)是定义域为R的奇函数,当x>0时$f(x)={(\frac{1}{2})^x}+1$
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间和值域.

分析 (1)根据奇函数定义得出f(0)=0,当x>0时$f(x)={(\frac{1}{2})^x}+1$,设x<0,则-x>0,转化求解f(x)=-f(-x)=-($\frac{1}{2}$)-x-1=-2x-1,得出解析式即可
(2)利用指数函数的单调性得出当x∈(0,+∞)时,f(x)为单调递减函数,当x<0时,x∈(-∞,0)时,为单调递减函数,求解值域就简单的多了.

解答 解;(1)∵函数f(x)是定义域为R的奇函数,
∴f(0)=0,
∵当x>0时$f(x)={(\frac{1}{2})^x}+1$,
设x<0,则-x>0,
∴f(x)=-f(-x)=-($\frac{1}{2}$)-x-1=-2x-1,
即$\begin{array}{l}f(x)=\left\{{\begin{array}{l}\begin{array}{l}{(\frac{1}{2})^x}+1(x>0)\\ 0(x=0)\end{array}\\{-{2^x}-1({x<0})}\end{array}}\right.\end{array}$.
(2)∵当x∈(0,+∞)时,f(x)为单调递减函数,
∴当x>0时,1<($\frac{1}{2}$)x+1<2,
∵当x<0时,x∈(-∞,0)时,为单调递减函数,
∴1<2x+1<2,
-2<-2x-1<-1,
故值域(-2,-1)∪{0}∪(1,2)

点评 本题考察了奇函数的性质,求解单调性,值域,属于中档题,考察了学生对于指数函数性质的熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}和单调递减数列{bn}(n∈N*),{bn}通项公式为bn=λn2+a7•n.若a3,a11是方程x2-x-2=0的两根,则实数λ的取值范围是(  )
A.(-∞,-3)B.$({-∞,-\frac{1}{6}})$C.$({-\frac{1}{6},+∞})$D.(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点M($\sqrt{3}$,2)为双曲线C右支上一点,且F2在以线段MF1为直径的圆的圆周上,则双曲线C的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.甲、乙比赛射击,射中的概率均为$\frac{1}{2}$,甲射击3次,记射中目标的次数为X,乙射击2次,记射中目标的次数为Y,若X>Y,则甲获胜,若X<Y,则乙获胜,分别求出甲和乙获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|3x+2>0},B={x|(x+1)(x-3)>0},则A∩B=(  )
A.(-∞,-1)B.$({-1,-\frac{2}{3}})$C.$({-\frac{2}{3},3})$D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,$\overrightarrow{AB}$=(1,1),$\overrightarrow{n}$=(1,-1),$\overrightarrow{n}$•$\overrightarrow{AC}$=2,则$\overrightarrow{n}$•$\overrightarrow{BC}$=(  )
A.-2B.2C.0D.-2或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.四条曲线x2=2y,x=2,x=-2,y=0围成的封闭图形绕y轴旋转一周所得的旋转体的体积为V1:满足$\left\{\begin{array}{l}y≥0\\{x^2}+{({y-1})^2}≤1\\{x^2}+{y^2}≤4\end{array}\right.$的平面区域绕y轴旋转一周所得的旋转体的体积为V2,则(  )
A.V1>V2B.V1<V2
C.V1=V2D.V1,V2无明确大小关系

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x、y满足$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x-y≥0}\end{array}\right.$ 则z=$\frac{y-1}{x}$的取值范围是(  )
A.[-1,0]B.[-1,1)C.(-∞,0]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线$\frac{x^2}{16}-\frac{y^2}{9}$=1与双曲线$\frac{x^2}{16-t}-\frac{y^2}{t+9}$=1(-9<t<16 )的(  )
A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等

查看答案和解析>>

同步练习册答案