精英家教网 > 高中数学 > 题目详情
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
(1);( Ⅱ)详见解析;( Ⅲ)详见解析.

试题分析:(1)当x<1时,f(x)=-x3+x2+bx+c,则f'(x)=-3x2+2x+b.依题意得:,由此能求出实数b,c的值.(2)由知,当-1≤x<1时,,令f'(x)=0得,当x变化时,f'(x),f(x)的变化情况列表知f(x)在[-1,1)上的最大值为2.当1≤x≤2时,f(x)=alnx.当a≤0时,f(x)≤0,f(x)最大值为0;当a>0时,f(x)在[1,2]上单调递增.当aln2≤2时,f(x)在区间[-1,2]上的最大值为2;当aln2>2时,f(x)在区间[-1,2]上的最大值为aln2.(3)假设曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.设P(t,f(t))(t>0),则Q(-t,t3+t2),显然t≠1.由此入手能得到对任意给定的正实数a,曲线y=f(x)上存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.
解:(1)当时,,则
依题意得:,即   解得
(2)由(1)知,
①当时,

变化时,的变化情况如下表:


0





0
+
0


单调递减
极小值
单调递增
极大值
单调递减
 
。∴上的最大值为2.
②当时, .当时, ,最大值为0;
时,上单调递增。∴最大值为
综上,当时,即时,在区间上的最大值为2;
时,即时,在区间上的最大值为
(3)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
是以O为直角顶点的直角三角形,∴
   (*)
若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
,则代入(*)式得:
,而此方程无解,因此。此时
代入(*)式得:    即  (**)
 ,则
上单调递增, ∵    ∴,∴的取值范围是
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角
三角形,且此三角形斜边中点在轴上。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数在区间内的最大值;
(2)当时,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A、B、C是直线l上不同的三点,O是l外一点,向量满足:记y=f(x).
(1)求函数y=f(x)的解析式:
(2)若对任意不等式恒成立,求实数a的取值范围:
(3)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)设函数,当时,讨论的单调性;
(2)若函数处取得极小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间内单调,则的最大值为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的最大值;
(2)若的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(1)是否存在实数,使得函数上单调递增?若存在,求出的值或取值范围;否则,请说明理由.
(2)若a<0,且函数y=f(x)的极小值为,求函数的极大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2013•浙江)已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则(  )
A.当k=1时,f(x)在x=1处取得极小值
B.当k=1时,f(x)在x=1处取得极大值
C.当k=2时,f(x)在x=1处取得极小值
D.当k=2时,f(x)在x=1处取得极大值

查看答案和解析>>

同步练习册答案