精英家教网 > 高中数学 > 题目详情
12.讨论函数f(x)=$\frac{x-2}{x+2}$ex的单调性,并证明当x>0时,(x-2)ex+x+2>0.

分析 求导,f'(x)=$\frac{{x}^{2}{e}^{x}}{(x+2)^{2}}$,令f'(x)>0,即可求得f(x)的单调递增区间,由当x>0时,根据函数单调性可知$\frac{x-2}{x+2}$ex>f(0)=-1,即可证,(x-2)ex+x+2>0.

解答 解:f(x)=$\frac{x-2}{x+2}$ex,f'(x)=ex($\frac{x-2}{x+2}$+$\frac{4}{(x+2)^{2}}$)=$\frac{{x}^{2}{e}^{x}}{(x+2)^{2}}$,
∵当f'(x)>0时,x<-2或x>-2,
∴f(x)在(-∞,-2)和(-2,+∞)上单调递增,
证明:∴x>0时,$\frac{x-2}{x+2}$ex>f(0)=-1
∴(x-2)ex+x+2>0.

点评 本题考查了导数在函数单调性上的应用,考查复合函数的求导法则以及导数代表的意义,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知一个矩形内接于半径为5的圆.
(1)当矩形周长最大时,求其面积.
(2)当矩形面积最大时,求其周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题“p:1<k<9”是命题“q:方程$\frac{x^2}{9-k}$+$\frac{y^2}{k-1}$=1表示椭圆”的必要不充分条件.(填“充要”或“充分不必要”或“必要不充分”或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=e2ax(a∈R)的图象C在点P(1,f(1))处切线的斜率为e,记奇函数g(x)=kx+b(k,b∈R,k≠0)的图象为l.
(1)求实数a,b的值;
(2)当x∈(-1,2)时,图象C恒在l的上方,求实数k的取值范围;
(3)若图象C与l有两个不同的交点A,B,其横坐标分别是x1,x2,设x1<x2,求证:x1•x2<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知两定点M(4,0),N(1,0),动点P满足$\overrightarrow{MN}$•$\overrightarrow{MP}$=6|$\overrightarrow{NP}$|,则动点P的轨迹方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sinθ=$\frac{1}{3}$(θ∈($\frac{π}{2}$,π)),则tan($\frac{3π}{2}$+θ)的值为(  )
A.2$\sqrt{2}$B.-2$\sqrt{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过两点A(1,$\sqrt{3}$),B(4,2$\sqrt{3}$)的直线的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列3,6,12,21,x,48…中的x等于(  )
A.29B.33C.34D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法中错误的是(  )
A.“|x|>1”是“x>1”的必要不充分条件.
B.若命题p:?x∈R,2x<3.则¬p:?x∈R,2x≥3.
C.若p∧q为假命题,则p∨q也为假命题.
D.命题“若x+y≠5,则x≠2或y≠3”是真命题

查看答案和解析>>

同步练习册答案