分析 求导,f'(x)=$\frac{{x}^{2}{e}^{x}}{(x+2)^{2}}$,令f'(x)>0,即可求得f(x)的单调递增区间,由当x>0时,根据函数单调性可知$\frac{x-2}{x+2}$ex>f(0)=-1,即可证,(x-2)ex+x+2>0.
解答 解:f(x)=$\frac{x-2}{x+2}$ex,f'(x)=ex($\frac{x-2}{x+2}$+$\frac{4}{(x+2)^{2}}$)=$\frac{{x}^{2}{e}^{x}}{(x+2)^{2}}$,
∵当f'(x)>0时,x<-2或x>-2,
∴f(x)在(-∞,-2)和(-2,+∞)上单调递增,
证明:∴x>0时,$\frac{x-2}{x+2}$ex>f(0)=-1
∴(x-2)ex+x+2>0.
点评 本题考查了导数在函数单调性上的应用,考查复合函数的求导法则以及导数代表的意义,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | -2$\sqrt{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | -$\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “|x|>1”是“x>1”的必要不充分条件. | |
| B. | 若命题p:?x∈R,2x<3.则¬p:?x∈R,2x≥3. | |
| C. | 若p∧q为假命题,则p∨q也为假命题. | |
| D. | 命题“若x+y≠5,则x≠2或y≠3”是真命题 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com