10£®2014Äê±±¾©ÊÐÐ¡Ñ§Ñ§Çø»®Æ¬¼°¶Ô¿ÚÖÐѧµÄÏêϸĿ¼³ǫ̈£¬×ÔǿСѧµÄÑ§Çø»®Æ¬ÊÇAÉçÇø£¬BÉçÇøºÍCÉçÇø£»¶Ô¿ÚÖ±ÉýÖÐѧ»ò´óÅÉλÖÐѧÊǼ×ÖÐѧ¡¢ÒÒÖÐѧ¡¢±ûÖÐѧ¡¢¶¡ÖÐѧ£®ÈçAÉçÇøµÄѧÁä¶ùͯ¿ÉÔÚ×ÔǿСѧÉÏѧ£¬Ð¡Ñ§±ÏÒµºó£¬¿ÉÒÔµ½¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄËùÖÐѧÖеÄÒ»ËùѧУ¾Í¶Á£®
£¨I£©Çó2014Äê×ÔǿСѧµÄÒ»Äê¼¶ÐÂÉúСÃ÷¡¢Ð¡»ªÀ´×ÔÓÚ²»ÓÃÉçÇøµÄ¸ÅÂÊ£¨¼ÙÉèСÃ÷¡¢Ð¡»ªÀ´×ÔÓÚÿ¸öÉçÇø¶¼ÊǵȿÉÄܵģ©
£¨II£©×ÔǿСѧ2014ÄêµÄÒ»Äê¼¶ÐÂÉúСÃ÷¡¢Ð¡»ª¡¢Ð¡¾üÈý¸öºÃÅóÓÑСѧ±ÏÒµºó¶¼ÏëÈ¥¼×ÖÐѧ¾Í¶Á£¬¼ÙÉè×ÔǿСѧµÄÿ¸öѧÉúÖ±Éý»ò´óÅÉλµ½¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄËùÖÐѧ¾Í¶ÁµÄ¿ÉÄÜÐÔ¶¼ÏàµÈ£¬ÉèÈýÈËÖе½¼×ÖÐѧ¾Í¶ÁµÄÈËÊýΪx£¬ÇóxµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨¢ñ£©ÏÈÇó³ö2014Äê×ÔǿСѧµÄÒ»Äê¼¶ÐÂÉúСÃ÷¡¢Ð¡»ªÀ´×ÔÓÚÉçÇøµÄ»ù±¾Ê¼þ×ÜÊý£¬Çó³öÇó³öСÃ÷¡¢Ð¡»ªÀ´×ÔÓÚ²»ÓÃÉçÇø°üº¬µÄ»ù±¾Ê¼þ¸öÊý£¬ÓÉ´ËÄÜÇó³ö2014Äê×ÔǿСѧµÄÒ»Äê¼¶ÐÂÉúСÃ÷¡¢Ð¡»ªÀ´×ÔÓÚ²»ÓÃÉçÇøµÄ¸ÅÂÊ£®
£¨¢ò£©ÓÉÌâÒâXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬ÇÒX¡«B£¨3£¬$\frac{1}{4}$£©£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼Áм°E£¨X£©£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬µÃ2014Äê×ÔǿСѧµÄÒ»Äê¼¶ÐÂÉúСÃ÷¡¢Ð¡»ªÀ´×ÔÓÚÉçÇøµÄ»ù±¾Ê¼þ×ÜÊýn=3¡Á3=9£¬
СÃ÷¡¢Ð¡»ªÀ´×ÔÓÚ²»ÓÃÉçÇø°üº¬µÄ»ù±¾Ê¼þ¸öÊým=${A}_{3}^{2}$=6£¬
¡à2014Äê×ÔǿСѧµÄÒ»Äê¼¶ÐÂÉúСÃ÷¡¢Ð¡»ªÀ´×ÔÓÚ²»ÓÃÉçÇøµÄ¸ÅÂÊp=$\frac{m}{n}$=$\frac{6}{9}=\frac{2}{3}$£®
£¨¢ò£©¡ß×ÔǿСѧµÄÿ¸öѧÉúÖ±Éý»ò´óÅÉλµ½¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄËùÖÐѧ¾Í¶ÁµÄ¿ÉÄÜÐÔ¶¼ÏàµÈ£¬
ÉèÈýÈËÖе½¼×ÖÐѧ¾Í¶ÁµÄÈËÊýΪX£¬
¡àXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬ÇÒX¡«B£¨3£¬$\frac{1}{4}$£©£¬
P£¨X=0£©=${C}_{3}^{0}£¨\frac{3}{4}£©^{3}$=$\frac{27}{64}$£¬
P£¨X=1£©=${C}_{3}^{1}£¨\frac{1}{4}£©£¨\frac{3}{4}£©^{2}$=$\frac{27}{64}$£¬
P£¨X=2£©=${C}_{3}^{2}£¨\frac{1}{4}£©^{2}£¨\frac{3}{4}£©$=$\frac{9}{64}$£¬
P£¨X=3£©=${C}_{3}^{3}£¨\frac{1}{4}£©^{3}$=$\frac{1}{64}$£®
¡àXµÄ·Ö²¼ÁÐΪ£º

 X 0 1 2 3
 P $\frac{27}{64}$ $\frac{27}{64}$ $\frac{9}{64}$ $\frac{1}{64}$
E£¨X£©=$0¡Á\frac{27}{64}+1¡Á\frac{27}{64}+2¡Á\frac{9}{64}+3¡Á\frac{1}{64}$=$\frac{3}{4}$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¶þÏî·Ö²¼µÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªº¯ÊýD£¨x£©=$\left\{\begin{array}{l}1\\ 0\end{array}\right.\begin{array}{l}{\;}&{xΪÓÐÀíÊý}\\{\;}&{xΪÎÞÀíÊý}\end{array}$£¬Ôò£¨¡¡¡¡£©
A£®D£¨D£¨x£©£©=1£¬0ÊÇD£¨x£©µÄÒ»¸öÖÜÆÚB£®D£¨D£¨x£©£©=1£¬1ÊÇD£¨x£©µÄÒ»¸öÖÜÆÚ
C£®D£¨D£¨x£©£©=0£¬1ÊÇD£¨x£©µÄÒ»¸öÖÜÆÚD£®D£¨D£¨x£©£©=0£¬D£¨x£©µÄ×îСÕýÖÜÆÚ²»´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬AB=8£¬AD=5£¬$\overrightarrow{CP}$=3$\overrightarrow{PD}$£¬$\overrightarrow{AP}$•$\overrightarrow{BP}$=2£¬$\overrightarrow{AB}$•$\overrightarrow{AD}$=£¨¡¡¡¡£©
A£®22B£®23C£®24D£®25

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªa£¬b£¬mΪ·ÇÁãʵÊý£¬ÇÒa2+b2+2-m=0£¬$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$+1-2m=0
£¨1£©ÇóÖ¤£º$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$¡Ý$\frac{9}{{a}^{2}+{b}^{2}}$£»
£¨2£©ÇóÖ¤£ºm¡Ý$\frac{7}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈôÍÖÔ²$\frac{x^2}{m}$+y2=1£¨m£¾1£©ÓëË«ÇúÏß$\frac{x^2}{n}$-y2=1£¨n£¾0£©Óй²Í¬µÄ½¹µãF1£¬F2£¬PÊÇÁ½ÇúÏßµÄÒ»¸ö½»µã£¬Ôò¡÷F1PF2µÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®3B£®1C£®$\frac{1}{3}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÒÑÖªABCDΪƽÐÐËıßÐΣ¬¡ÏA=60¡ã£¬Ïß¶ÎABÉϵãFÂú×ãAF=2FB£¬AB³¤Îª12£¬µãEÔÚCDÉÏ£¬EF¡ÎBC£¬BD¡ÍAD£¬BDÓëEFÏཻÓÚN£®ÏÖ½«ËıßÐÎADEFÑØEFÕÛÆð£¬Ê¹µãDÔÚÆ½ÃæBCEFÉϵÄÉäÓ°Ç¡ÔÚÖ±ÏßBCÉÏ£®
£¨¢ñ£©ÇóÖ¤£ºBD¡ÍÆ½ÃæBCEF£»
£¨¢ò£©ÇóÕÛºóÖ±ÏßDEÓëÆ½ÃæBCEFËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÍÖÔ²CµÄ³¤Ö᳤Ϊ4£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl£ºy=kx-$\sqrt{3}$ÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬ÊÇ·ñ´æÔÚʵÊýkʹµÃÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾­¹ý×ø±êÔ­µãO£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=£¨x+1£©|lnx|£®
£¨I£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨II£©Èô¶ÔÓÚÈÎÒâµÄx¡Ê[1£¬+¡Þ£©£¬f£¨x£©¡Ýa£¨x-1£©ºã³ÉÁ¢£¬ÇóaµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®MÊÇÅ×ÎïÏßx2=yÉÏÒ»µã£¬NÊDz»µÈʽx+y-4¡Ý0±íÊ¾ÇøÓòÄÚµÄÒ»µã£¬OΪԭµã£¬Ôò|$\overrightarrow{ON}$+2$\overrightarrow{OM}$|µÄ×îСֵΪ$\frac{{7\sqrt{2}}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸