精英家教网 > 高中数学 > 题目详情
已知向量
a
b
满足:|
a
|=1,|
b
|=2,且
a
b
的夹角为
π
3
,则(
a
+
b
)•(
a
-2
b
)=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:将(
a
+
b
)•(
a
-2
b
)展开,利用已知的
a
b
满足:|
a
|=1,|
b
|=2,且
a
b
的夹角为
π
3
解答.
解答: 解:由已知,
a
b
=|
a
||
b
|cos
π
3
=1,
(
a
+
b
)•(
a
-2
b
)=
a
2
-
a
b
-2
b
2
=1-1-8=-8.
故答案为:-8.
点评:本题考查了向量的乘法运算原来向量的数量积的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正实数a,b,c成等比数列,x,y分别为a与b,b与c的等差中项,则
a
x
+
c
y
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1<0,S9=S22,该数列前n项和Sn取最小值时,n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数(
1-i
1+i
5的虚部是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足线性约束条件
x-y+5≥0
x+y-5≥0
x≤3
,则z=2x+4y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,如果AB=BC=1,AA1=2,那么A到直线A1C的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,值域为(0,+∞)的是(  )
A、y=log2x
B、y=x2-2x+1
C、y=(
1
2
x
D、y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(x0,y0)是函数f(x)=2013sinx的图象上一点,且f(x0)=2013,则该函数图象在点M处的切线的斜率为(  )
A、2013B、-2013
C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

经过圆x2+2x+y2=0的圆心C,且与直线x+y=0平行的直线方程是 (  )
A、x+y+1=0
B、x+y-1=0
C、x-y+1=0
D、x-y-1=0

查看答案和解析>>

同步练习册答案