【题目】在平面直角坐标系
中,已知抛物线
的焦点为
,准线为
,
是抛物线上
上一点,且点
的横坐标为
,
.
(1)求抛物线
的方程;
(2)过点
的直线
与抛物线
交于
、
两点,过点
且与直线
垂直的直线
与准线
交于点
,设
的中点为
,若
、![]()
、
四点共圆,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】为了了解手机品牌的选择是否和年龄的大小有关,随机抽取部分华为手机使用者和苹果机使用者进行统计,统计结果如下表:
年龄 手机品牌 | 华为 | 苹果 | 合计 |
30岁以上 | 40 | 20 | 60 |
30岁以下(含30岁) | 15 | 25 | 40 |
合计 | 55 | 45 | 100 |
附:
P( | 0.10 | 0.05 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
根据表格计算得
的观测值
,据此判断下列结论正确的是( )
A.没有任何把握认为“手机品牌的选择与年龄大小有关”
B.可以在犯错误的概率不超过0.001的前提下认为“手机品牌的选择与年龄大小有关”
C.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”
D.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新高考取消文理科,实行“
”模式,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人,并把调查结果制成下表:
年龄(岁) |
|
|
|
|
|
|
频数 | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)把年龄在
称为中青年,年龄在
称为中老年,请根据上表完成
列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?
了解新高考 | 不了解新高考 | 总计 | |
中青年 | |||
中老年 | |||
总计 |
附:
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(2)若从年龄在
的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为
,求
的分布列以及
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
和曲线
交于A,B两点(点A在第二象限).过A作斜率为
的直线
交曲线M于点C(不同于点A),过点
作斜率为
的直线
交曲线
于E,F两点,且
.
![]()
(I)求
的取值范围;
(Ⅱ)设
的面积为S,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有如下命题,其中真命题的标号为( )
A.若幂函数
的图象过点
,则![]()
B.函数
(
,且
)的图象恒过定点![]()
C.函数
有两个零点
D.若函数
在区间
上的最大值为4,最小值为3,则实数m的取值范围是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为等差数列,各项为正的等比数列
的前
项和为
,
,
,__________.在①
;②
;③
这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).
(1)求数列
和
的通项公式;
(2)求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆
:
(
)过点
,离心率为
,其左、右焦点分别为
,
,且过焦点
的直线
交椭圆于
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若点
的坐标为
,设直线
与直线
的斜率分别为
,试证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com