精英家教网 > 高中数学 > 题目详情
5.已知$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{16}}}({x+1}),x<0}\\{-{x^2}+x,x≥0}\end{array}}\right.$,则关于x的方程f(x)=m(m∈R)恰有三个不同的实数根a,b,c,则abc的取值范围是(  )
A.$({-\frac{1}{16},0})$B.$({-\frac{1}{4},0})$C.$({-\frac{1}{8},0})$D.$({-\frac{1}{2},0})$

分析 作出f(x)的函数图象,根据图象判断a,b,c的范围和关系,利用基本不等式和不等式的性质得出abc的范围.

解答 解:作出f(x)的函数图象,如图所示:

不妨设a<b<c,则-$\frac{1}{2}$<a<0$<b<\frac{1}{2}<1$,
由图象可知b,c关于直线x=$\frac{1}{2}$对称,
∴b+c=1,bc<($\frac{b+c}{2}$)2=$\frac{1}{4}$,
∴0<bc<$\frac{1}{4}$,又-$\frac{1}{2}<a<0$,
∴-$\frac{1}{8}$<abc<0.
故选C.

点评 本题考查了函数零点与函数图象的关系,不等式的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若(sinθ+$\frac{1}{x}$)5的展开式中$\frac{1}{{x}^{3}}$的系数为2,则cos2θ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设矩阵M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,求矩阵M的逆矩阵M-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,则输出s的值等于(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.将圆x2+y2-2x=0向左平移一个单位长度,再把所得曲线上每一点的纵坐标保持不变,横坐标变为原来的$\sqrt{3}$倍得到曲线C.
(1)写出曲线C的参数方程;
(2)以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{3\sqrt{2}}{2}$,若A,B分别为曲线C及直线l上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是“二分法”求方程近似解的流程图,在①,②处应填写的内容分别是(  )
A.f(a)•f(m)<0?;b=mB.f(b)•f(m)<0?;b=mC.f(a)•f(m)<0?;m=bD.f(b)•f(m)<0?;b=m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,设边a,b,c所对的角分别为A,B,C,且a>c.已知△ABC的面积为$2\sqrt{2}$,$sin(A-B)+sinC=\frac{2}{3}sinA$,b=3.
(Ⅰ)求a,c的值;
(Ⅱ)求sin(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.《孙子算经》是我国古代内容极为丰富的数学名著,其中一个问题的解答可以用如图的算法来实现,若输入的S,T的值分别为40,126,则输出a,b的值分别为(  )
A.17,23B.21,21C.19,23D.20,20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在等差数列{an}中,a1=-2017,其前n项和为Sn,若$\frac{{{S_{10}}}}{10}-\frac{S_8}{8}=2$,则S2017的值等于-2017.

查看答案和解析>>

同步练习册答案