精英家教网 > 高中数学 > 题目详情
(1)设{an}是公差为d的等差数列,推导公式:若m+n=p+q(m,n,p,q,N+),则am+an=ap+aq
(2)若{bn}的前n项和Sn=An2+Bn+C,证明当C≠0时,数列{bn}不是等差数列.
考点:等差数列的性质
专题:等差数列与等比数列
分析:(1)根据等差数列的通项公式和定义即可得到公式:若m+n=p+q(m,n,p,q,N+),则am+an=ap+aq
(2)先求出数列的通项公式,根据等差数列的定义进行判断.
解答: 解:(1)∵数列{an}为等差数列,
∴am+an=a1+(m-1)d+a1+(n-1)d=2a1+(m+n-2)d,
ap+aq=a1+(p-1)d+a1+(q-1)d=2a1+(p+q-2)d,
又m+n=p+q,
∴am+an=ap+aq
(2)∵{bn}的前n项和Sn=An2+Bn+C
∴当n=1时,b1=S1=A+B+C;
当n≥2时,
bn=Sn-Sn-1=An2+Bn+C-[A(n-1)2+B(n-1)+C]=2An-A+B,即当n≥2时,
数列{bn}的通项公式为bn=2An-A+B,
当n=1时,b1=A+B+C≠A+B,
∴数列{bn}不是等差数列.
点评:本题主要考查等差数列的性质的应用,以及等差数列的判断,要求熟练掌握相应的通项公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,在区间(0,+∞)上是增函数的是(  )
A、y=-2x+3
B、y=
-2
x-1
C、y=-x2
D、y=x2-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴,焦距为2
3
,F1,F2是椭圆的左右焦点,P为椭圆上一点,且|PF1|+|PF2|=4.
(Ⅰ)求此椭圆C的标准方程;
(Ⅱ)直线l过焦点F1,斜率为1,交椭圆C于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(
4x2+b
+2x)
,其中b是常数.
(1)若y=f(x)是奇函数,求b的值;
(2)求证:y=f(x)的图象上不存在两点A、B,使得直线AB平行于x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x+1|+|x-5|,x∈R.
(1)求不等式f(x)≤2x的解集;
(2)如果关于x的不等式loga2<f(x)在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

试探求函数f(x)=x2+2ax+1在区间[-1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x+
1
|x|

(1)指出的f(x)值域;
(2)求函数f(x)对任意x∈[-2,-1],不等式f(mx)+mf(x)<0恒成立,求实数m的取值范围.
(3)若对任意正数a,在区间[1,a+
2014
a
]内存在k+1个实数a1,a2,…,ak+1使得不等式f(a1)+f(a2)+…+f(ak)<f(ak+1)成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3(x∈R),若0≤θ<
π
2
时,f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(
1
x
)=
x
x+1
,则f(x)的导数为
 

查看答案和解析>>

同步练习册答案