精英家教网 > 高中数学 > 题目详情
3.在等比数列{an}中,已知q=$\frac{1}{2}$,则$\frac{{a}_{2}+{a}_{5}}{2{a}_{4}+{a}_{1}}$的值为$\frac{9}{20}$.

分析 根据等比数列的通项公式,代值计算即可.

解答 解:q=$\frac{1}{2}$,则$\frac{{a}_{2}+{a}_{5}}{2{a}_{4}+{a}_{1}}$=$\frac{{a}_{1}q+{a}_{1}{q}^{4}}{2{a}_{1}{q}^{3}+{a}_{1}}$=$\frac{q+{q}^{4}}{2{q}^{3}+1}$=$\frac{\frac{1}{2}+\frac{1}{16}}{2×\frac{1}{8}+1}$=$\frac{9}{20}$,
故答案为:$\frac{9}{20}$.

点评 本题考查了等比数列的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列命题的逆命题为真命题的是(  )
A.若x>2,则(x-2)(x+1)>0B.若x2+y2≥4,则xy=2
C.若x+y=2,则xy≤lD.若a≥b,则ac2≥bc2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=2sin(2x+$\frac{π}{4}$)在x∈[0,π]范围内的最值,并说出取得最值时x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0,若公差d<0,则S1,S2,…,S12中最大的为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设p:?x0∈R,-x${\;}_{0}^{2}$+2x0-m>0,q:函数f(x)=$\frac{1}{3}$x3-2x2+4mx+1在R内使增函数,则¬p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=lg($\frac{2}{1-x}$+a)是奇函数,则使f(x)<0的x的取值范围是(  )
A.(0,1)B.(-1,0)C.(-∞,0)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|y=1n(1-x2)},B={y|y=1n(1-x2)},则CR(A∩B)=(  )
A.(-∞,-1)∪(0,+∞)B.(-∞,-1]∪[0,+∞)C.(-1,0)D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用秦九韶算法计算函数f(x)=2x5-3x3+5x2-4,当x=2时的函数值时,v3=15.
(其中,当f(x)=anxn+an-1xn-1+…+a1x+a0时,$\left\{\begin{array}{l}{{v}_{0}={a}_{n}}\\{{v}_{k}={v}_{k-1}x+{a}_{n-k}(k=1,2,…,n)}\end{array}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-ax(a∈R).
(1)若a=-2,求曲线y=f(x)在x=1处的切线方程;
(2)求f(x)的单调区间.

查看答案和解析>>

同步练习册答案