分析 (1)根据三角函数的周期公式求解即可,将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间;
(2)结合三角函数的图象和性质,求出f(x)的最大值和最小值,及相应的x的取值集合
解答 解:(1)函数f(x)=$2sin(\frac{1}{2}x+\frac{π}{6})+2$.
∴函数f (x)的最小正周期T=$\frac{2π}{\frac{1}{2}}$=4π,
由$\frac{π}{2}+2kπ≤\frac{1}{2}x+\frac{π}{6}≤\frac{3π}{2}+2kπ$,k∈Z,
得:$\frac{2π}{3}+4kπ$≤x≤$\frac{8π}{3}+4kπ$,
∴函数f (x)的单调递减区间为[$\frac{2π}{3}+4kπ$,$\frac{8π}{3}+4kπ$],k∈Z,
(2)∵当$\frac{1}{2}x+\frac{π}{6}$=$\frac{π}{2}$+2kπ时,即x=4kπ$+\frac{2π}{3}$,可得:sin($\frac{1}{2}x+\frac{π}{6}$)的最大值为1,∴f (x) 的最大值2×1+2=4;
相应的x的取值集合为{x|x=4kπ$+\frac{2π}{3}$,k∈Z}.
当$\frac{1}{2}x+\frac{π}{6}$=$\frac{3π}{2}$+2kπ时,即x=4kπ$+\frac{8π}{3}$,可得:sin($\frac{1}{2}x+\frac{π}{6}$)的最小值为-1,∴f (x) 的最大值-2×1+2=0;
相应的x的取值集合为{x|x=4kπ$+\frac{8π}{3}$,k∈Z}.
点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2013×2015 | B. | 2014×2016 | C. | 2015×2017 | D. | 2016×2018 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2017×22016 | B. | 2017×22014 | C. | 2016×22017 | D. | 2016×22018 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com