精英家教网 > 高中数学 > 题目详情
12.从全校参加数学竞赛的学生的试卷中,抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比为1:3:6:4:2,最右边一组的频数是6.
(1)成绩落在哪个范围的人数最多?并求出该小组的频数、频率;
(2)估计这次竞赛中,成绩高于60分的学生占总人数的百分百.

分析 (1)图中矩形面积最大的一组就是人数最多的组,由此找出最高的矩形,在[70.5,80.5)这一组,再用公式求出其频数、频率;
(2)用样本估计总体:在样本中算出四个组占总数的百分比,就可以估计出成绩高于60分的学生占总人数的百分比.

解答 解:(1)最右边一组的频数是6,从左到右各小组的长方形的高之比为1:3:6:4:2
∴设样本容量为n,得(1+3+6+4+2):n=2:6
∴n=48,样本容量为48,
成绩落在[70.5,80.5)内人数最多,
频数为$6×\frac{6}{2}=18$,频率为$\frac{18}{48}$=0.375.
(2)成绩高于60(分)的学生占总人数的$\frac{3+6+4+2}{1+3+6+4+2}$=$\frac{15}{16}$=93.75%.

点评 本题考查了频率直方图的有关知识,属于基础题.频率直方图中,各个小长方形的面积等于该组数据的频率,所有长方形的面积之和等于1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的首项a1=1.
(1)若an+1=an+n+1,则an=$\frac{n(n+1)}{2}$;
(2)若an+1=2n•an,则an=${2}^{\frac{n(n-1)}{2}}$;
(3)若an=3an-1+3n(n≥2),则an=$(n-\frac{2}{3})•{3}^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正方形AG1G2G3中,点B,C分别是G1G2,G2G3的中点,点E,F分别是G3C,AC的中点,现在沿AB,BC及AC把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后记为G.
(I)判断在四面体GABC的四个面中,哪些面的三角形是直角三角形,若是直角三角形,写出其直角(只需写出结论);
(Ⅱ)请在四面体GABC的直观图中标出点E,F,并求证:EF∥平面ABG;
(Ⅲ)求证:平面EFB⊥平面GBC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)的定义域是[0,4],则函数f(2x-3)的定义域是$[{\frac{3}{2},\frac{7}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆x2+y2-2x+4y+1=0的半径为(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:
(1)T={f(x)|x∈S};
(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).
那么称这两个集合“保序同构”,现给出以下4对集合:
①S={0,1,2},T={2,3};
②S=N,T=N*
③S={x|-1<x<3},T={x|-8<x<10};
④S={x|0<x<1},T=R.
其中,“保序同构”的集合对的序号是②③④(写出所有“保序同构”的集合对的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\sqrt{3-x}$-2lg(x+1)的定义域为(  )
A.(-1,3]B.(-∞,3]C.[3,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将函数y=msinx(其中m≠0)的图象上的所有点向左平移$\frac{π}{6}$个单位,再将所得图象上所有点的横坐标压缩到原来的$\frac{1}{2}$倍,纵坐标保持不变,得到了函数y=f(x)的图象.
(1)写出函数f(x)的表达式;
(2)当m=$\frac{1}{2}$时,求函数f(x)的最小正周期及对称中心;
(3)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,函数f(x)的最大值为2,试求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设抛物线y=$\frac{1}{4}$x2上一点P到x轴的距离是2,则点P到该抛物线焦点的距离是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案