分析 利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出最小正周期,令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可解得函数的单调递增区间.
解答 解:∵f(x)=$\frac{1}{2}$sin2x+$\frac{{\sqrt{3}}}{2}$cos2x=sin(2x+$\frac{π}{3}$),
∴最小正周期T=$\frac{2π}{2}$=π,
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,
可得函数的单调递增区间为:[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],(k∈Z),
故答案为:π,[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],(k∈Z).
点评 此题考查了两角和与差的正弦函数公式,正弦函数的图象和性质以及周期公式的应用,将函数解析式化为一个角的正弦函数是解本题的关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 全额分组 | [1,5) | [5,9) | [9,13) | [13,17) | [17,21) | [21,25] |
| 频数 | 3 | 9 | 17 | 11 | 8 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在[0,3]上是减函数 | B. | 在[-3,0]上是减函数 | ||
| C. | 在[0,π]上是减函数 | D. | 在[-π,0]上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | -$\frac{1}{9}$ | C. | -$\frac{1}{6}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com