精英家教网 > 高中数学 > 题目详情
已知xn是函数f(x)=xn+xn-1+xn-2+…+x-1(x>0,n∈N且n≥2)的零点.
(1)证明:
1
2
<xn+1<xn<1;
(2)证明:
x1+x2+…+xn
n
1
2
考点:综合法与分析法(选修),函数零点的判定定理,利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(1)求导数,证明f(x)在(0,+∞)上是增函数,利用f(1)=n-1>0,f(
1
2
)=1-(
1
2
)n
<0,可得f(x)在(
1
2
,1)内有唯一零点,利用反证法证明xn+1<xn
(3)原不等式等价于x2+x3+…+xn
n
2
,证明xn
1
2
+(
1
2
)n
,即可得出结论.
解答: 证明:(1)∵f(x)=xn+xn-1+xn-2+…+x-1,
∴f′(x)=nxn-1+(n-1)xn-2+…+2x+1,
∵x>0,
∴f′(x)>0,
∴f(x)在(0,+∞)上是增函数,
∵f(1)=n-1>0,f(
1
2
)=1-(
1
2
)n
<0,
∴f(x)在(
1
2
,1)内有唯一零点,
1
2
<xn<1,
假设:xn+1≥xn
∴xn+1n+1+xn+1n+xn-2+…+xn+1-1>xnn+xnn-1+xnn-2+…+xn-1,
∴f(xn+1)>f(xn),
即0>0,矛盾,
∴xn+1<xn
1
2
<xn+1<xn<1;
(2)原不等式等价于x2+x3+…+xn
n
2

∵|f(xn)-f(
1
2
)|=|xnn+xnn-1+xnn-2+…+xn-1-(
1
2
n-…-
1
2
+1|>xn-
1
2

f(xn)=0,f(
1
2
)=-(
1
2
)n

∴xn
1
2
+(
1
2
)n

∴x1+x2+…+xn
n-1
2
+
1
4
[1-(
1
2
)n-1]
1-
1
2
=
n-1
2
+
1
2
-(
1
2
)n
n
2

x1+x2+…+xn
n
1
2
点评:本题考查导数知识的运用,考查函数的零点,考查不等式的证明,考查学生分析解决问题的能力,难度大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

海中一小岛,周围3.8海里内有暗礁,海轮由西向东航行,望见这岛在北偏东75°,航行8海里以后,望见这岛在北偏东60°,如果这艘海轮不改变航向继续前进,有没有触礁的危险?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2-4x+3=0},B={x|x<3,x∈N},求A∪B,A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2-kx-8,x∈[1,5].
(1)当k=12时,求f(x)的值域;
(2)若函数f(x)具有单调性,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≤-1或x≥3},B={x|2a<x<a+4},如果A∪B=R,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

7月份,有一款新服装投入某市场销售.7月1日该款服装仅销售出3件,7月2日售出6件,7月3日售出9件,7月4日售出12件,尔后,每天售出的件数分别递增3件直到日销售量达到最大(只有1天)后,每天销售的件数开始下降,分别递减2件,到7月31日刚好售出3件.
(1)问7月几号该款服装销售件数最多?其最大值是多少?
(2)按规律,当该商场销售此服装达到200件时,社会上就开始流行,而日销售量连续下降并低于20件时,则不再流行,问该款服装在社会上流行几天?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
x
4x-a
在(1,+∞)上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C的方程为y=ax2(a<0),过抛物线C上一点P任作斜率为k1,k2的两条直线,分别交抛物线C于A(x1,y1),B(x2,y2)两点(P,A,B三点互不相同),
(1)求抛物线C的焦点坐标和准线方程;
(2)若点P为抛物线C的顶点,且直线AB过点(0,
1
a
),求证:k1•k2是一个定值;
(3)若点P的坐标为(1,-1),且k1+k2=0,求∠PAB为钝角时点A的纵坐标y1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设含有两个元素的集合A是方程x2-4x+m=0的解集,求实数m的取值范围.

查看答案和解析>>

同步练习册答案