精英家教网 > 高中数学 > 题目详情
15.把13022(4)转化为六进制数2042(6)

分析 先将“四进制”数化为十进制数,然后将十进制的458化为六进制,即可得到结论.

解答 解:先将“四进制”数13022(4)化为十进制数为1×44+3×43+2×41+2×40=458(10)
然后将十进制的458化为六进制:
458÷6=76余2,
76÷6=12余4,
12÷6=2余0,
2÷6=0余2,
0÷6=0余0,
所以,结果是2042(6)
故答案为:2042(6)

点评 本题考查的知识点是四进制、十进制与六进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知圆E的极坐标方程为ρ=4$\sqrt{3}$sin(θ+$\frac{π}{6}$),直线l的参数方程为$\left\{\begin{array}{l}{x=2t+n}\\{y=4t}\end{array}\right.$(t为参数,n∈R)
(1)以极点为坐标原点,极轴为x轴的正半轴建立直角坐标系,求圆E的直角坐标方程;
(2)圆E上有且仅有三点到直线l的距离为$\sqrt{3}$,求实数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知抛物线y2=4x上有一条长为6的动弦AB,则AB的中点到y轴的最短距离是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.随机变量ξ~N(0,1),则P(1≤ξ≤2)=(  )
(参考数据:P(μ-σ≤ξ≤μ+σ)=0.6286,P(μ-2σ≤ξ≤μ+2σ)=0.9544,P(μ-3σ≤ξ≤μ+σ3)=0.9974)
A.0.0215B.0.1359C.0.1574D.0.2718

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.画出函数的图象:y=arccos(2x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义在R上的偶函数,f(x)在x>0时,f(x)=ex+lnx,若f(a)<f(a-1),则a的取值范围是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,M是椭圆上任一点,△MF1F2面积的最大值为1,椭圆的内接矩形(矩形的边与椭圆的对称轴平行)面积的最大值为2$\sqrt{2}$,则椭圆的方程为$\frac{{x}^{2}}{2}$+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若${C}_{21}^{k-4}$<${C}_{21}^{k-2}$<${C}_{21}^{k-1}$(k∈N),则k的取值范围是{k|4≤k≤11,k∈N}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=alnx+x2f′(1)+${∫}_{1}^{e}$$\frac{1}{x}$dx,且f′(2)=7,
(1)求曲线f(x)在x=1处的切线方程;
(2)若函数f(x)>m对于x>$\frac{1}{e}$恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案