精英家教网 > 高中数学 > 题目详情
曲线y=
x
x+1
在点(0,0)处的切线方程为(  )
A、y=-x
B、y=
1
2
x
C、y=x
D、y=2x
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.
解答: 解:∵y=
x
x+1

∴y′=
1
(x+1)2

当x=0时,y′=1,
∴曲线y=
x
x+1
在点(0,0)处的切线方程为y=x.
故选:C.
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(-1,1)和圆C:x2+y2-10x-14y+70=0,一束光线从点A出发,经过x轴反射到圆周C的最短路程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边分别为a,b,c,若a=4,b=4
3
,A=30°,则C等于(  )
A、90°
B、90°或 150°
C、90°或30°
D、60°或 120°

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式ax2+2ax-4≥2x2+4x的解集为空集,则实数a的取值范围是(  )
A、(-2,2)
B、(-∞,2]
C、(-2,2]
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于(  )
A、10 cm3
B、20 cm3
C、30 cm3
D、40 cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2+2x-3
的单调增区间是(  )
A、[1,+∞)
B、(-∞,-1]
C、(-∞,-3]
D、[-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-3,0),F2(3,0)动点p满足:|PF1|+|PF2|=6,则动点P的轨迹为(  )
A、椭圆B、抛物线
C、线段D、双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)满足f(x+y)=f(x)+f(y)对任何实数x,y都成立.
(1)求证:f(2x)=2f(x);
(2)求f(0)的值;
(3)求证f(x)为奇函数.

查看答案和解析>>

同步练习册答案