精英家教网 > 高中数学 > 题目详情
2.设全集U=R,M={x|x<2},N={x|x≤a},若∁UM?∁UN,则a的取值范围是(-∞,2].

分析 求出集合的补集,利用补集关系,求解a的范围即可.

解答 解:全集U=R,M={x|x<2},N={x|x≤a},
UM={x|x≥2};
UN={x|x>a},
UM?∁UN,
可得:a≤2.
故答案为:(-∞,2].

点评 本题考查集合交、并、补的运算,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(sinωx,sin(ωx+$\frac{2}{3}$π)),ω>0,f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)当ω=2时,求f(x)的周期和单调递增区间;
(2)若f(x)在区域[0,2π]上恰有一个最大值和一个最小值,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(4sin2θ-3sinθ,1),$\overrightarrow{b}$=(1,-λ),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则λ的取值范围是$[-\frac{9}{16},7]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已经平行四边形ABCD中,AB=4,E为AB的中点,且△ADE是等边三角形,沿DE把△ADE折起至A1DE的位置,使得A1C=4.(1)F是线段A1C的中点,求证:BF∥平面A1DE;
(2)求证:A1D⊥CE;
(3)求点A1到平面BCDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:(x+1)(x-1)(x2-x+1)(x2+x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)的定义域为D,区间I⊆D,若存在常数L,使得对任意x1,x2∈I,都有|f(x1)-f(x2)|≤L|x1-x2|,则称函数f(x)在区间I上满足李普希兹(Lipschitz)条件,已知f(x)=x2ex在区间(-∞,1]上满足李普希兹条件,则L的最小值是(  )
A.3eB.2eC.eD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正方体ABCD-A1B1C1D1的棱长为1,G,H分别为DA1,CA1中点
(1)求证:GH∥平面CDD1C1
(2)求证:BC1⊥平面A1CD
(3)求三棱锥A-BCG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆C:x2+2y2=4
(1)求椭圆C的离心率;
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等比数列{an}中,a2=2,a5=16,则a6=32.

查看答案和解析>>

同步练习册答案