精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow{a}$=(4sin2θ-3sinθ,1),$\overrightarrow{b}$=(1,-λ),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则λ的取值范围是$[-\frac{9}{16},7]$.

分析 $\overrightarrow{a}$⊥$\overrightarrow{b}$,可得$\overrightarrow{a}•\overrightarrow{b}$=0,化为λ=$4(sinθ-\frac{3}{8})^{2}$-$\frac{9}{16}$.利用sinθ∈[-1,1]及其二次函数的单调性即可得出.

解答 解:∵$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=4sin2θ-3sinθ-λ=0,
∴λ=$4(sinθ-\frac{3}{8})^{2}$-$\frac{9}{16}$.
∵sinθ∈[-1,1],
∴$(sinθ-\frac{3}{8})^{2}$∈$[0,\frac{121}{64}]$.
∴λ∈$[-\frac{9}{16},7]$.
故答案为:$[-\frac{9}{16},7]$.

点评 本题考查了向量垂直与数量积的关系、三角函数的值域、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知在△ABC的顶点A(3,3)、B(2,-2)、C(-7,1).
(1)求△ABC的面积;
(2)∠A的平分线AD所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(x-y)(x+y)8的展开式中x7y2的系数为20(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知5cos2α+4cos2β=4cosα,则2cos2α+cos2β+1的取值范围是(  )
A.[0,$\frac{16}{25}$]B.[-$\frac{5}{2}$,2]C.[-$\frac{5}{2}$,$\frac{3}{2}$]D.[0,$\frac{32}{25}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+2(1-2a)x+6在(-∞,-1)上是减函数.
(1)求f(2)的取值范围;
(2)比较f(2a-1)与f(0)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=1+2x,g(x)=$\frac{1}{{2}^{\left|x\right|}}$+3.
(1)求函数g(x)的值域;
(2)求满足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,∠ABC=90°,BC的中点为D,已知sin∠CAD=$\frac{1}{3}$,求∠CAB的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设全集U=R,M={x|x<2},N={x|x≤a},若∁UM?∁UN,则a的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.正△ABC边长为1,P为其内部(不含边界)的任意点,设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),则在平面直角坐标系内点(x,y)对应区域的面积为(  )
A.1B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步练习册答案